
D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

D1.2 Platform Design Guidelines for Single Core
Version 2.0

Document Information

Contract Number 249100

Project Website www.proartis-project.eu

Contractual Deadline m27

Dissemination Level D1.2 Restricted*/Public1

Nature D1.2 Report

Lead Authors Eduardo Quiñones, Jaume Abella and Francisco J. Cazorla

Contributors All members of all institutions (BSC, RAPITA, UNIPD,
INRIA, AFS)

Reviewers Tullio Vardanega (D1.2)

Keywords Processor architecture, Random Cache Designs, Compiler,
Probabilistic Timing Analysis, Single core

Notices:

The research leading to these results has received funding from the European Community’s Sev-

enth Framework Programme ([FP7/2007-2013] under grant agreement no 249100.

c©2010 PROARTIS Consortium Partners. All rights reserved.

1All Deliverables marked RE*/PU will be publically available within 6 months of their delivery

to the EC

1

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Change Log

Version Description of change

v1.0 Initial Draft released to the European Commission

v2.0 Updated version in which the text accompanying reference [8]
has been updated to better represent what it is said in [8] (Check
the paragraph starting with ‘IBM has for example found that’
on page 9). In this version it has also been clarified which parts
of Figure 2.1 are based on facts and which parts are intuitions
of the partners (check paragraph starting with ‘Our belief is’ on
page 12).

2

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

3

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

4

Contents

1 Introduction 5

2 PROARTIS technology: Vision and Approach 7
2.1 Background . 7

2.1.1 Timing Composability . 8
2.2 PROARTIS . 9

2.2.1 Vision and Approach . 9
2.2.2 Foundations . 11

3 Towards a Processor Architecture with Probabilistically Analysable
Timing behaviour 17
3.1 Hardware Support for PTA . 19

3.1.1 On PTA and its assumptions on the hardware 19
3.1.2 Mandatory Features . 20
3.1.3 Providing the mandatory features 21

3.2 Probabilistically Modelling the Timing Behaviour of Processor Re-
sources . 24
3.2.1 Assigning ETP to individual resources 24
3.2.2 Composing the ETP of different resources 26

3.3 Computing the ETP of execution components using multiple time-
randomised resources . 27

3.4 A Taxonomy of Processor Resources 28
3.4.1 Abstract Classification . 29
3.4.2 An Illustrative Example . 30
3.4.3 The Case of the Branch Predictor 32
3.4.4 Hardware Resource Taxonomy 33

4 The PROARTIS Random Cache: Random Placement and Ran-
dom Replacement Policies 37
4.1 Timing Behaviour of Random Caches 38
4.2 Random Replacement . 39
4.3 Random Placement . 41
4.4 Generalisation of the Cache Layout Concept 43
4.5 Putting All Together: Set-Associative Caches 44
4.6 Hardware Implementation . 45

4.6.1 Pseudo-Random Number Generator 45
4.6.2 Random Replacement Policy 47
4.6.3 Random Placement Policy 47

5

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

5 Compiler and Run-Time Support for Randomisation 49
5.1 Random Cache Behaviour on Deterministic Caches 49
5.2 Software Components and Memory Objects 50
5.3 Random Location of Memory Objects 51

5.3.1 Memory Object Size . 51
5.3.2 Influence of the Deterministic Placement Policy 52

5.4 Computation of ETPs at Processor Instruction Level 53
5.5 Random Software Approach Implementation: Stabilizer 54

5.5.1 Function Randomisation . 54
5.5.2 Stack Randomisation . 55

Acronyms and Abbreviations . 57

6

1

Introduction

In this Deliverable we first introduce the PROARTIS vision and motivation and
summarise the PROARTIS technology. In that introductory section it is shown that
the use of Probabilistic Timing Analysis (PTA) requires that the timing behaviour
of the platform, considered at the granularity of processor instructions, must have
either no dependence at all on execution history or a dependence that can be
characterised probabilistically.
In the second section, we introduce the PROARTIS platform, a Probabilistic Plat-
form formed by the processor hardware and those low-level software components
whose operation may affect the timing behaviour of processor instructions: The
compiler and memory-related run-time libraries. The PROARTIS platform intro-
duces time randomisation in both components as a way to enable the use of PTA.
We define the mandatory processor features required to apply PTA and provide
a detail taxonomy of how processor resources accomplish with PTA requirements.
This section also presents the PROARTIS time-randomised cache, whose timing
behaviour fulfills the PTA mandatory features. Finally, a software technique that
enables deterministic caches to have the same required timing behaviour of the
PROARTIS random cache is presented.
The evaluation results of the hardware and software techniques presented in this
deliverable are shown in deliverable D3.4. This has been done in this way since
we have to introduce first the PTA techniques and then show the results of the
combined time-randomised hardware and PTA techniques.

7

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

8

2

PROARTIS technology: Vision
and Approach

The market for Critical Real-Time Embedded Systems (CRTES), which includes
among others the avionics and automotive sectors, is experiencing an unprece-
dented growth, and is expected to continue to steadily grow for the foreseeable
future [9]. Let us for instance consider the automotive domain: a state-of-the-art
high-end car, which currently embeds up to 70 Electronic Control Units (ECUs), is
predicted to embed many more [8] to account for the inclusion of such new increas-
ingly sophisticated functions as Advanced Driver Assistance Systems (ADAS). For
CRTES of this kind it is imperative to ensure the timing correctness of system
operation: some form of Worst-Case Execution Time (WCET) analysis is needed
to that end.

The competition on functional value, measured in terms of application services de-
livered per unit of product faces CRTES industry with rising demands for greater
performance, increased computing power, and stricter cost-containment. The lat-
ter factor puts pressure on the reduction in the number of processing units and
ECUs used in the system, to which industry responds by looking at more power-
ful processors, with aggressive hardware acceleration features like caches and deep
memory hierarchies.

IBM has for example found that 50% of the warranty costs in cars are related
to electronics and their embedded software, which cost industry billions of Euros
annually [8]. In this evolving scenario, it must be acknowledged that the indus-
trial application of current WCET analysis techniques [35], which accounts for a
significant proportion of total verification and validation time and cost of system
production, yields far from perfect results.

2.1 Background

Current state-of-the-art timing analysis techniques can be broadly classified into
three strands: measurement based, static timing analysis and hybrid approaches
using combinations of both [35].

- Measurement-based analysis techniques rely on extensive testing performed on
the real system under analysis [10] using stressful, high-coverage input data,

9

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

recording the execution times observed. One common technique in industry
is to measure high watermarks and add an engineering margin to make safety
allowances for unknown scenarios. However, the size of a suitable engineering
margin is extremely difficult – if at all possible – to determine, especially when
the system may exhibit discontinuous changes in timing due to pathological cache
access patterns or other unanticipated timing behaviour.

- Static timing analysis techniques do not execute the code, instead they rely on
the construction of a cycle-accurate model of the system and a mathematical
representation of the application code which makes it possible to determine the
timing behaviour on that model. The mathematical representation is then pro-
cessed with linear programming techniques to determine an upper-bound on the
WCET. Static approaches have limitations: they are expensive to carry out ow-
ing to the need to acquire exhaustive knowledge of all factors, both hardware
and software, that determine the execution history of the program under anal-
ysis. Some processor architectures may dramatically increase this cost. Others,
possibly subject to intellectual property restrictions or incomplete documenta-
tion, may even make it altogether impossible; in that case the construction of
the timing model must resort to observations.

- Hybrid measurement and static techniques use combinations of measurements
and structural analysis. The approach taken by RapiTime is to take small parts
of code that are measured and combined using analysis. Hybrid techniques
avoid having to construct an expensive model of the hardware and allow the
user to achieve a higher confidence in a WCET than simply measuring end-to-
end. However such techniques require a good method of measuring on-target
timing information and still rely on having an adequate level of testing.

In order to appreciate the complexity of acquiring complete knowledge of execution
history, consider a cache model with a Least Recently Used (LRU) replacement pol-
icy. The accuracy in predicting the hit/miss outcome of a memory access depends
on knowing the full sequence and addresses of the previous memory accesses made
by the program up to the point of interest, in order to build a complete and cor-
rect representation of the cache state. Any reduction of the available knowledge,
e.g. when the addresses of some memory accesses are unknown, leads to a rapid
degradation of the tightness of the WCET estimation. In fact, partial knowledge
can lead to results as inaccurate as those obtained with no information at all.

2.1.1 Timing Composability

Most static analysis techniques produce a single estimate for a single worst-case
path, which makes it difficult to reason about how subsystems contribute to the
execution time behaviour of the system as a whole. Measurement-based analysis
suffers from the fragility of assuming that the observation of the system in the test
environment will match the behaviour after deployment, and that an engineering
safety margin is sufficient to protect against unexpected increases in execution time.

Hybrid analysis strikes a balance between the other methods, and improves a great
deal on the accuracy of measurement-based analysis and the complexity of static
analysis.

10

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

All of these approaches have a common problem: that of a lack of composability.
The results obtained for components of a system are either specific to that system,
and cannot be reused when the components are combined in a different configura-
tion, or – if they are – they incur undue pessimism. This makes some engineering
goals, such as incremental qualification, extremely difficult to achieve.

2.2 PROARTIS

2.2.1 Vision and Approach

PROARTIS begins from the observation that the underlying obstacle in all of the
approaches enumerated above is the number of dependences present in the exe-
cution of the system. The execution time of each instruction is dependent on a
number of factors (events), including the state of the performance-enhancing fea-
tures of the hardware architecture, the state of the peripheral devices in the system,
and in (Symmetric MultiProcessing) SMP architectures, the software which may
be running on another core sharing the same system bus and RAM. A consequence
of those dependences is that in order to appropriately track execution time, and
hence WCET of a program, detailed knowledge is required of the system and the
dependence factors impending on it.

Our strategy to reduce the cost of acquiring knowledge about execution state (and
thus dependent on history) of a program-hardware pair required to perform trust-
worthy analysis is to adopt a hardware/software architecture whose execution tim-
ing behaviour eradicates dependence on execution history by construction. In this
deliverable and deliverable D3.4, we quantify the amount of execution history de-
pendence in current architectures and the cost of acquiring the knowledge to feed
current timing analysis techniques for the attainment of tight WCET estimations.

One way to achieve the sought independence is via introducing randomisation in the
timing behaviour of the hardware and possibly of the software (while the functional
behaviour is left unchanged), coupled with new probabilistic analysis techniques.
An example of such hardware is a cache memory in which, in the event of a miss,
the victim is randomly selected from any position in the cache. We call this unit of
eviction/replacement, cache entry. Under this cache configuration, the probability
of hit/miss for an access has a small dependence on execution history, in particular,
the number of cache misses between the access under consideration and the previous
access to the same address. Note that the hit/miss probability is different from
the frequency of events. For instance, a memory instruction may have a 50% hit
probability if every time it accesses cache we flip a coin and hit if and only if we get
heads. Conversely, if the instruction hits and misses alternately, that instruction
does not have a 50% hit probability but a 50% hit frequency. This is so because
the outcome, and hence the latency, of each access is fully deterministic.

Applying time-randomisation techniques has inevitable consequences for the average-
case execution time of a program. Figure 2.1 illustrates the PROARTIS view of exe-
cution time 1. The execution time shift between deterministic and time-randomised
architectures is marked (a): In general we expect the time-randomised profile to

1In deliverable D3.4 we quantify the intuition-based results shown in Figure 2.1.

11

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 2.1: Execution time distributions for conventional deterministic architectures
and a proposed time-randomised architecture, superimposed with the PROARTIS
worst-case probability distribution

shift to the right (to increase) in relation to the deterministic profile, and to spread
across a larger range of execution times. However the resulting distribution be-
comes more predictable: by decoupling timing events (e.g., cache accesses), they
compose into a smooth curve, with a long tail describing execution times which are
increasingly unlikely. Dependences between events in deterministic architectures
can have an abrupt impact on execution time, producing discontinuities in the pos-
sible execution times which are difficult to model with a parametric distribution.

The absolute maximum execution time produced by the PROARTIS analysis will
be many times greater than a conventional WCET, as it will correspond with the
case where all instructions take the longest possible time to execute (e.g., every
cache access is a miss [30]). We expect instead to gain by tightening the gap
between observed execution times and worst-case execution bounds using a proba-
bilistic confidence limit. The result of static analysis of deterministic architectures
produces a degree of pessimism, where unknown states must be considered to have
their worst consequences on the timing of the system. The ‘true WCET’ lies some-
where in the range marked (b) in Figure 2.1, between the maximum observed
execution time and the WCET bound produced by analysis.

In PROARTIS the consequences of these unknown states can be considered prob-
abilistically, which enables us to reason about the WCET probabilistically. Tech-
niques from Extreme Value Theory (EVT) are used to construct a worst-case prob-
ability distribution. We define worst-case bounds with stated confidence levels,
which can be chosen to match the degree of uncertainty present in the rest of the
system under analysed. Our belief is that probabilistic WCET (pWCET) bounds
are considerably more resilient to the lack of execution state information about
the system being analysed than classic static timing analysis (STA). This resilience
translates in STA incurring increasingly more pessimistic WCET bounds as less
execution state information is available. This degradation occurs because STA
must assume the worst case when no better hypotheses can be sustained, and the
resource-level worst case for deterministic processor architectures can be very high.
In the reporting period we have collected some initial experimental evidence to
support our hypothesis: the results are presented and discussed in Section 4.6 of
D3.4. This initial evidence corresponds exactly to the claim represented by area

12

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

(c) in Figure 2.1.
WCET estimates are then computed by considering the execution time at which
the cumulative probability (ΣP) exceeds the required level of confidence. These
confidence levels are expressed in Figure 2.1 in terms of the probability of exceeding
the WCET threshold in any given run, however this figure should be adjusted based
on arrival frequency to determine the probability per hour, or per year as necessary.

2.2.2 Foundations

By modelling the timing behaviour of system components as random variables, a
sound mathematical basis can be introduced upon which statistical methods for
execution time analysis may be applied. This means that WCET estimates can
be given with a confidence value, rather than being an absolute, but pessimistic
guarantee.

Platform Requirements The PROARTIS method of Probabilistic Timing Anal-
ysis (PTA) rests on two fundamental premises, which must be warranted by the
system of interest, inclusive of its processor hardware, the Operating System and
the application software:

1. The timing behaviour of the processor hardware, as observed at the gran-
ularity of processor instructions, must have either no dependence at all on
execution history or a dependence that can be characterised probabilistically.

2. The timing behaviour of the application software, as observed at the granu-
larity of procedures (subprograms) must be time composable, this meaning
that the bound determined for each individual procedure must stay valid (i.e.,
true upperbounds) - and possibly but not necessarily as tight - in the face of
its composition with other procedures and ultimately after integration in the
full system.

The fulfilment of Premise 1 is specifically discussed in Section 3 and a publication
produced by the PROARTIS team is being submitted to a top-tier conference at
the time of this writing. The essence of the PROARTIS strategy to achieve the
property evoked by Premise 1 is that the hardware resources used by processor
instructions should be divided in two categories: those whose response time jitters
by an amount that can be bounded from above (i.e., by fixing it to the worst-case)
without incurring excessive pessimism; and those whose response time jitter cannot
be bounded from above without incurring unacceptable pessimism and therefore
must be redesigned to randomise their timing behaviour so that it is subject to
probabilistic laws that have no (or probabilistically boundable) dependence on the
history of execution. A similar principle is followed to remove or bound from
above software-introduced variability, both at application and operating system
level. Overall, the observations taken to feed the analysis method capture all the
variability that can appear at run time, ensuring that the pWCET estimations
obtained from runs done during the testing phase bounds the execution time of the
system during deployment time.
A typifying example of a processor resource with high jitter is the cache memory
(regardless of whether for data or instructions). In Sections 3 and 4, in addition

13

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

to presenting a taxonomy of all processors resources in the regard of their response
time jitter, we show that the cache memory can be redesigned using a high-quality
long-period pseudo-random number generator to drive its response time. We also
show that the performance of such a time-randomised cache (which uses random
placement and random eviction on access or miss): can be economically imple-
mented; incurs an acceptable performance degradation; has a residual dependence
on execution history in the eviction policy, which, while depending on the consid-
ered execution path, retains no dependence across paths so that it can be used
in a probabilistic timing analysis that studies multiple paths. Finally, we present
a randomise compiler and run-time system, named Stabilizer, that allows caches
implementing a deterministic modulo placement policy to behave as having the
PROARTIS random placement policy and so fulfilling Premise 1.
To address Premise 2, instead, deliverable D2.2 presents a novel approach to the
design and implementation of a time-composable operating system, whose service
calls have a tightly upperbounded response time and whose execution has no neg-
ative effect on the timing behaviour of the caller after return. Interestingly, this
notion of time composability is equally beneficial for classic timing analysis for
standard platforms, but its fuller benefit manifests itself for PROARTIS systems
where the entire system construction seeks independence of timing behaviour at all
levels of abstraction.

Timing Analysis PROARTIS pursues three approaches to PTA:

- Static PTA (SPTA), the timing events that correspond to the random variables of
interest are determined statically from a model of the processor and the software.
Static PTA is performed by calculating the convolution of the discrete probability
distributions which describe the execution time for each processor instruction;
from this we obtain a probability distribution, or Execution Time Profile (ETP),
which represents the timing behaviour of the entire sequence of instructions.
Static PTA can be applied to single, linear paths. The results obtained from this
step of application can then be combined into a pessimistic envelope profile which
covers the worst-case path(s), using techniques in use with industrial quality tools
like RapiTime.

- Measurement-Based PTA (MBPTA), in which, end-to-end measurement runs of
the program under study (again, linear paths of program traversal) are made
on the PROARTIS hardware. The resulting information is used to determine
the timing profile - as an execution time frequency distribution - of individual
elements (paths) of the system, and then of the system as a whole. This proce-
dure critically depends on the availability of input data that warrant sufficient
path coverage: whereas in classic STA full path coverage must absolutely be
achieved, a measurement-based PTA only needs a probabilistically quantified
measure of coverage, to be applied to the computed timing profile, which can be
obtained from recording all (source and object) paths traversed during measure-
ment runs and relating this information to the observed execution time values.
In PROARTIS, MBPTA provides pWCET estimate for observed paths during
the end-to-end measurement runs.

- Hybrid PTA (HyPTA) follows the same principle of operation used by RapiTime,

14

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

that is a combination of static structural analysis and measurements from testing.
HyPTA uses the measured times for small segments of code, which typically cor-
respond to source code blocks. For each block MBPTA is performed, with which
HyPTA builds a probabilistic “envelope” that produces the pWCET estimate
of the entire program. That is the profiles of the observed paths are combined
using the structure of the code to obtain an overall WCET estimate for the entire
program, including synthetic paths which may not have been tested.

The PROARTIS method of measurement-based probabilistic timing analysis (MBPTA
for short) builds on the provable fulfilment of Premises 1 and 2 discussed above
and of their related corollaries. The MBPTA method and its theoretical founda-
tion are presented in a publication to appear in the proceedings of ECRTS 2012, a
world-wide acclaimed top-tier real-time systems conference [11].

The MBPTA approach to worst-case execution time analysis proposed by PROAR-
TIS builds on the application of Extreme Value Theory (EVT) on the postulate
that worst-case execution times can be regarded as rare events. The input values to
be analysed with EVT techniques are execution times obtained from measurement
runs of the program units of interest. The use of EVT for our purposes requires
(1) that those values can be regarded as independent and identically distributed
random variables 2. The two premises discussed at the start of this section serve
to warrant this hypothesis. And (2) that the pWCET estimations obtained from
execution time observations during testing are guaranteed to bound from above
the execution times that can be incurred during system operation. PROARTIS
achieves this important property by ensuring that all sources of execution time
variability are either upperbounded so that those sources have the same behaviour
during testing and operation; or time-randomised which enables us to use observa-
tions to derive conclusions about unobserved execution times.

The application of EVT further demands the choice of a specific EVT-conforming
distribution with which the events of interest are to be studied. Of the three EVT-
conforming distributions that are known to the state of the art, the PROARTIS
MBPTA method has chosen the Gumbel distribution, which is shown to best ac-
commodate the problem of modelling the tail end of the execution time distribution,
hence its worst-case behaviour.

Each of the individual distribution functions is characterised by a specific choice of
three discriminating parameters known as: the shape; the scale; and the location.
The choice of a given distribution, Gumbel’s for PROARTIS MBPTA, requires the
determination of those three parameters and the demonstration that they provably
fit the chosen distribution characteristics. On account of all of these prerequisites,
the PROARTIS MBPTA method proceeds as follows:

(a) A number of execution-time observations (measurement runs) have to be made
for each and every program unit of interest. The cited publication [11] proposes
an empirical method, which it experimentally demonstrates to determine that
a sufficient number of observations has been made.

2Two random variables X and Y are independent if they describe two events such that the
outcome of one event does not have any impact on the outcome of the other. A sequence of random
variables is identically distributed if all random variables have the same probability distribution.
A more detailed explanation of both concepts is given in deliverable D3.4

15

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

(b) The principles of EVT theory are applied to the product of step (a) by group-
ing the observations in sets, and sampling the maxima from each set. This
method, known as block maxima, serves the purpose of fitting the tail end
of the execution time distribution, which captures the worst-case timing be-
haviour. Various criteria exist to determine the most convenient size of such
sets; an obvious trade-off occurs here between accuracy and cost.

(c) An iterative process is used to arrive at the point where a best-fit Gumbel
distribution is found for the data selected from the observations. This process
may require additional observation data to be supplied and different selection
(refinement) of the distribution-characterising parameters (shape, scale and
location).

Step (a) of the above procedure stays the same regardless of whether the program
unit (procedure) is single-path or else includes multiple paths; of course, multi-path
program units are to be regarded as the norm and not the exception. When step
(a) is applied to a multi-path program unit, care must be taken to ensure that the
single, compound distribution obtained from the observation of measurement runs
traversing multiple paths still exhibits the required property of independence and
identical distribution. This may be achieved either by selecting inputs randomly
when running the measurement runs and grouping them sequentially (step (a)),
or by testing all inputs and selecting results randomly, without replacement, when
performing grouping (step (b)). We assume that there is a direct and traceable
correspondence between the input (data and state) to a measurement run and the
path taken by the execution. Obviously, the question arises as to the validity of
the results obtained from this method in the face of the path coverage attained
by the measurement runs. Two comments are in order in this regard: (1) We
assume and in fact even require that the measurement runs are performed as
part of functional testing, so that the application of the above-described MBPTA
method attains no less path coverage than that claimed by functional test for the
system. The fact that, in force of Premise 2, a PROARTIS-compliant system is
time composable by construction, makes this process only marginally most onerous
for the user since all that the PROARTIS method requires additionally is the
achievement of a minimum number of observations per path, which may be larger
than that required by functional testing alone. (2) The results obtained by the
method are only valid for the path coverage that is actually attained, and that
can be recorded with modest enhancement of the test environment. No claim can
be made for the unobserved paths. Yet, methods exist to determine unobserved
paths of interest, i.e., those that could provide longer execution time than that
captured by the observations (which could be done using the current functionality
of RapiTime) or to combine, pessimistically, the observations made for leaf program
units along a path-aware tree-based structure of the control flow graph of coarser-
grained program units. The latter option is the approach used by HyPTA, which
applies MBPTA for every block and builds a probabilistic envelope from it for the
entire program.

An important feature for PROARTIS is that the tail-end of execution time dis-
tributions obtained by the analysis are composable; that is, that a system level
analysis may be performed by combining pWCET results from component-level

16

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

analysis. This can be achieved by ensuring that the estimated distributions are
independent of other effects in the system, or at least designing the system in
such a way that the maximum reciprocal effects can be bounded from above and
accounted for during system verification.

Independence is a core consideration of PROARTIS, but it is important to recog-
nise the circumstances in which it must apply. Clearly, not all dependence can
be eliminated from the system, as this would defeat many of the performance im-
proving features we are attempting to enable. It appears to be sufficient that we
attenuate (or ideally even eliminate) the effect of execution timing history on tim-
ing behaviour. That is, we would like to ensure that if the time one event takes
to execute, regardless of whether short or long, does not affect the probability
distribution of the execution time of subsequent events. Warranting this prop-
erty enables the relevant timing distributions to be combined using a convolution
operation, both at the instruction and component levels. Otherwise, another com-
bination strategy must be used which takes the potential dependence into account
at the cost of incurring larger pessimism.

The essence of the PROARTIS strategy to achieve time composability as defined
above works as follows:

- The fulfilment of Premise 1 ensures that the timing behaviour of the processor
does not carry dependence on execution history across program runs. This is
true by definition for all processor resources whose response time has been fixed
to the worst case. This can also be made to hold for time randomised processor
resources in one of two ways: (1) the state of the time randomised processor
resource is considered to be, for static analysis, or put in, for measurement-
based analysis, the worst case before the program unit of interest is analysed;
(2) a probabilistic characterisation is derived for the perturbation of the state of
the time randomised resource, from the perspective of the program unit under
analysis, as resulting from all executions occurring in between two subsequent
runs of the said program unit. On top of this, run-to-completion semantics is
assumed (and it is actually required) for all such program units so that the
interference effect resulting from pre-emption do not need to be considered in
the analysis.

- With the above hypothesis in force, no perturbation can occur on the timing
behaviour of a program unit from other program units at the application level;
moreover no further state retention may occur at the level of the processor hard-
ware that can cause the execution time of the program unit of interest to incur
variations that exceed the upper bound determined by PROARTIS analysis. It
therefore follows that the sole other source of perturbation can be the Operating
System in that the response time of calls made to it by the program unit of
interest (whether implicitly, at the start and the end of relevant execution, or
explicitly, as part of the unit code at the application level) may vary as a result
of previous invocations by the same or other program unit. This disturbance,
which may potentially break time composability is avoided by construction in
PROARTIS by a novel design of the Operating System. The approach to achieve
this goal is discussed in deliverable report D2.2.

17

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Results The results obtained so far by the PROARTIS team on the PROARTIS
execution platform confirm the soundness of the PROARTIS approach. Our re-
sults show that, unlike standard deterministic platforms, the PROARTIS execution
platform (hardware and software) meets the PTA requirements. This PTA-friendly
architecture has an average performance loss with respect to a deterministic archi-
tecture of less than 20% for the configurations used for the experiments presented
in this report. The SPTA and MBPTA techniques have been shown to provide
effective pWCET estimations. The latter covers both single-path and multipath
programs. For the setup we used, the WCET estimations we obtain are compa-
rable to those achieved by static timing analysis. When some of the information
that STA requires is missing, e.g. the address of some accesses to memory, the
pWCET estimations obtained with our PTA techniques are several times (from
2x to 6x) better than those achieved by STA. Moreover, the novel design and im-
plementation of a time-composable operating system further aids in achieving and
preserving time composability at the application level.
HyPTA is applied to a flight guidance system for a missile applied on a processor
simulator and the current results are provided in deliverable D3.4. At this stage we
are able to show that the results provided by RapiTime at the level of basic blocks
are sufficient to build a probabilistic envelope. This conclusion is based on the
fulfilment of all hypotheses of MBPTA that is applied to the level of basic blocks.

Overall, we have developed the theoretical basis and the support techniques to
effectively enable and apply Probabilistic Timing Analysis for single-core systems.
The results include a clear specification of the platform (hardware/compiler and
software) requirements to enable the use of PTA and the actual implementation of
PTA techniques per se. We have developed the PROARTIS execution stack tech-
nology and tool-chain needed to verify the whole range of PROARTIS technology
for timing analysis, hardware simulation, compilation, operating system and appli-
cation software to be thoroughly evaluated. We have also evaluated the PROARTIS
solutions against: EEMBC and Mälardalen benchmarks; PROARTIS specifically-
designed benchmarks (PSB); and, more importantly, the AFS case studies and
Rapita’s Missile Guidance System demonstrator.

18

3

Towards a Processor Architecture
with Probabilistically Analysable
Timing behaviour

Probabilistic Timing Analysis (PTA) [7] allows accurate modelling of the execu-
tion time of the execution component of interest, considered at a given level of
execution granularity, e.g. an application, a procedure, a basic block, through a
probability distribution function. The response time of each component at that
level of granularity can thus be assigned a distinct probability of occurrence1.

This probabilistic timing behaviour can be described by an Execution Time Profile
(ETP for short), which, for an execution component Ri, is expressed by a pair

of vectors ETP (Ri) = {
→
ti,
→
pi}, where

→
ti= {t1i , t2i , ..., t

Ni
i , } captures all possible

execution times of Ri, and
→
pi= {p1

i , p
2
i , ..., p

Ni
i , } the corresponding probabilities

of occurrence, with
∑Ni

j=1 p
j
i = 1. In other words, the timing vector in the ETP

of a component defines a probabilistic distribution function that enumerates all
the possible response times that an execution of that component may incur, and
assigns, for each response time, the probability of occurrence. Ultimately, PTA
techniques seek to build the exceedance function for the program, which – for a
given cut-off execution time value – gives the probability that the actual runtime
of the program exceeds that value.

The definition of the ETPs imposes an important requirement in its timing be-
haviour: the execution times observed by the component must fulfil the independent
and identically distributed (i.i.d.) property.

The level of granularity of the timing events of interest to PTA depends on the
analysis approach considered. In case of MBPTA the events of interest are the
execution time of end-to-end traversals of program paths in which the timing be-
haviour of each instruction is known to conform with a specific ETP. The problem
at this level then requires assuring independence and identical distribution for the
timing of those traversals. Through the hardware approach proposed in PROAR-
TIS this is achieved by ensuring that the i.i.d. property holds at the level of
processor instruction. Moreover, PROARTIS also evaluates software techniques to
force deterministic hardware, i.e. cache modulo placement policy, to behave as the

1True probability is different from frequency. We refer the reader to Section 3.2.1 where we
elaborate on this important observation.

19

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

proposed PROARTIS hardware.
This section considers the processor instruction as the level of granularity to which
an ETP is defined, to better understand the mandatory features required by a
probabilistic platform, focusing on the hardware. Other authors who studied PTA
considered other levels of abstraction: for example, Petters looked at basic blocks
in [29]; Burns and Griffin at time bands in [5]. Section 5 focuses on the software
techniques.

Approach The PROARTIS platform has been designed so that every individual
processor instruction can be characterised by a distinct ETP. We build those ETP
incrementally. Without loss of generality, we consider the inner functionality of a
processor architecture to employ a number of passive resources (e.g. cache, buffers,
buses, branch predictors), and we assume each processor instruction will use some of
those resources in a given order, whether in sequence or in parallel. We design each
such resource so that it can be assigned an ETP: to achieve this for all resources,
we use time randomisation in some of them. A resource whose timing behaviour is
not randomised must be safely assigned a local upper-bound that is not exposed to
timing anomalies: any such resource will have an ETP containing a single timing
value with a probability of 1. The processor architecture determines the way in
which the ETP of individual resources must be convolved2 to produce the ETP for
a processor instruction. The timing events that the ETP of a processor instruction

Ik describes can be regarded as i.i.d. random variables if and only if: (a)
→
tk does

not vary with the history of previous execution in that resource; and (b)
→
pk does

not vary with the timing outcome of previous instructions in the sequence in which
Ik is used. This condition allows PTA techniques to ignore the internal features
of the processor that enable the i.i.d. property to hold for the timing of individual
processor instructions. PTA can thus concentrate solely on the program, resting on
the knowledge that there will be no effects on the runtime of the program stemming
from the history of execution within the processor.

Contribution This section provides, for the first time, a clear understanding of
the features that a processor architecture must possess to fit the assumptions of
probabilistic timing analysis in the form described above. This section also offers
insight into the implementation costs that may be incurred by actually providing
them. In this section: (i) We show which architectural changes are required in a
processor to meet the PTA requirements by design, regardless of the structure of
the program under analysis. Hence, with our by-design PTA-friendly processor
architecture, no requirements are placed on the program to make it tractable with
PTA techniques3. We show how the ETP of resource groups inside the processor
can be determined from the ETP of individual resources. We also show that such
groups may comprise both time-randomised and non-time-randomised resources.
(ii) We present an example of a pipelined processor architecture which incorporates

2In probability theory, a convolution is a function that, given the probability distribution
functions for two independent random variables, computes the probability distribution function
of the combined variables.

3Of course, a well-structured, timing-aware program makes the quest for flow facts and code-
level analysis in general much simpler, and PTA in any flavour is not exempt from that because
it will certainly require path-related knowledge to be acquired.

20

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

high-performance resources, such as caches and TLB, and yet is provably amenable
to PTA. (iii) We show that our example processor passes both independence and
identical distribution tests.

3.1 Hardware Support for PTA

3.1.1 On PTA and its assumptions on the hardware

In Section 2 and in [7] we showed that three PTA variants exist: static PTA
(SPTA), measurement-based PTA (MBPTA) and hybrid PTA (HyPTA). SPTA
derives a-priori probabilities from a model of the system. MBPTA derives prob-
abilities from end-to-end runs of the program on the target hardware. HyPTA
derives probabilities from the combination (as probabilistic envelope) of the results
of the application of MBPTA at the level of basic blocks. Therefore HyPTA has
the same requirements as MBPTA on the hardware; in this section we present then
only the requirements of MBPTA and SPTA.

Given a program and a processor, SPTA builds the exact probability distribution
for the execution time of the program. SPTA needs to know the ETP for each
execution component, building upward from a given level of granularity: for exam-
ple, this may be the processor instruction – which is our choice here –, the basic
block, or the subprogram. SPTA requires the i.i.d. hypothesis to hold for all the
granularity levels at which ETP are to be built. Ideally the ETP of individual com-
ponents of execution would hold constant across distinct uses in different sequences
which ensures that the timing probabilities which the ETP express are indepen-
dent of the history of execution. In reality, a PTA-imperfect implementation of
a resource at any level of execution granularity may achieve independence but be
unable to guarantee identical distribution. This happens when the timing vector of
the ETP of that resource is insensitive to history of execution within the resource
itself, but the corresponding probability vector is affected by preceding execution
outside of the resource. If this hindrance occurs in the construction of the ETP for
a given processor instruction, then that instruction has one ETP for any distinct
sequence of instructions (i.e., a program path) which precedes it. SPTA models one
sequence of instructions at a time: individual paths must be combined by taking
a pessimistic upper bound. This means that globally non-identical distributions
simply add the requirement that the ETP is recomputed for each path, restoring
i.i.d. within that sequence. If there are further dependences, e.g. between the
outcome of an earlier timing event and the current instruction, then a compound
distribution might be computed which considers all the possible outcomes, reduc-
ing the granularity to short sequences of instructions. This kind of entanglement
quickly spreads however, as evidenced in conventional static timing analysis, and
it is highly desirable to maintain strict independence within a sequence to avoid
pessimistic simplifications becoming necessary.

MBPTA, as with any other measurement-based approach, instead uses observa-
tions to infer an approximation of the program timing behaviour, which must be
proven to bound the actual distribution from above at all the points of interest. In
MBPTA, since actual measurements capture (as opposed to predict) the outcome
of the events that make the execution time vary, the low-level ETP need not be

21

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

known by the MBPTA analysis tool as with SPTA. The fact that ETP exist by
construction guarantees that the processor timing behaviour acts as a die with an
arbitrarily large number of faces – each representing one end-to-end execution time
– and distinct probabilities of occurrence for each face. From this knowledge, and
a sufficiently large number of i.i.d. observations, we can use techniques such as Ex-
treme Value Theory [21] (EVT) to derive probabilistic WCET estimations. EVT
is a branch of statistics which models the convergence of the tail of a sequence of
i.i.d. random variables with a known distribution. When those variables describe
execution times – at the required level of granularity – then the tails of sequences
of those variables describe the worst-case behaviour of the program. Several re-
searchers have shown how to use EVT with the intent of providing probabilistic
WCET estimations [7, 12,17,18].

SPTA and MBPTA both require timing behaviour to be modelled with i.i.d events,
although at different levels of granularity. Our PTA approach meets the require-
ments of both SPTA and MBPTA. In fact, the key is that the ETP of processor
instructions can be constructed. We consider processor instructions to use a given
set of resources in some order. We design those resources so that they can be as-
signed an ETP for which the i.i.d. hypothesis holds by construction. Resources can
be assigned an ETP under two conditions: they are either forced to have a constant
response time, or their timing behaviour is randomised in a manner that satisfies
the i.i.d. hypothesis. We then know we can convolve the ETP of those resources to
determine the ETP of the processor instruction that uses them, in accordance with
the architectural style (e.g., series or parallel) determined by the processor design.
The convolution process and the processor architecture must preserve the i.i.d. hy-
pothesis upward, from processor resources to processor instructions. We show that
in our approach this is guaranteed, as well as seeing that it is not necessary for all
resources to be time randomised.

In the following we discuss the mandatory features that a processor architecture
must exhibit to fit our requirements.

3.1.2 Mandatory Features

We argue that the processor architecture must possess certain ‘mandatory fea-
tures’, denoted {M1, · · · ,Mn}, for the founding PTA hypotheses to hold in the
end-to-end measurement runs for MBPTA, or in the ETP generation for SPTA. A
processor architecture is said to be probabilistically analysable in the time domain,
or PTA-friendly, if it provably provides all of those features. As a matter of fact the
mandatory features we require are not independent of one another as the satisfac-
tion of some of them enables others to be met. Figure 3.1 depicts the precedence
relation among them. We first present them in the natural flow of narrative, which
starts with the most dependent, and thus most critical; subsequently we discuss
their satisfaction following the precedence relation among them.

[M1] The hardware must allow the timing events of interest to be modelled as i.i.d.
random variables. We view this requirement to be best met at the granularity
of processor instructions. One way to achieve this property is to randomise the
timing behaviour of certain processor resources, which we require with mandatory
feature M2 below.

22

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 3.1: The mandatory features to be exhibited by PTA-friendly architectures
and the precedence relation among them

[M2] The timing behaviour of the resources employed at the level of granularity set for
mandatory feature M1 must either be truly randomised or allow bounding from
above.

In this section we do not discuss how to randomise the timing behaviour of every
resource needed to implement all the instructions in a processor: we claim it can
be done, and observe that it has in fact been proposed for such resources as caches,
deployed for example in the Aeroflex Gaisler NGMP [2], as well as buses [22]
(in Section 4 we propose a time-ransomised cache that accomplishes with PTA
requirements). We further discuss how to incrementally compose resources with
either randomised or bounded timing behaviour into subsystems. We accomplish
this in a manner which preserves independence for individual instructions whose ex-
ecution uses multiple resources, as well as identical distribution in the probabilities
of execution time for sequences of processor instructions.

[M3] The hardware must be equipped with a high-quality random number generator
that enables processor resources to exhibit time-randomised behaviour at low cost.

[M4] The hardware must be provably free of timing anomalies [24, 34], because they
intrinsically break the independence we assume for the timing behaviour of indi-
vidual resources. Absence of this feature would prevent the analysis from safely
using the upper-bounding of the execution time of non-time-randomised resources
when composing them at a higher level of granularity.

We now discuss the above features in detail and examine the hardware support
needed to satisfy them. In the discussion we follow the precedence relation shown
in Figure 3.1, from the most basic features, M3 and M4, culminating with M1. We
differentiate deterministic resources, which may indeed have jittery execution time,
from time-randomised resources where timing behaviour can instead be accurately
related to a true probability law.

3.1.3 Providing the mandatory features

M3: High-Quality Random Number Generator Achieving timing randomi-
sation in processor resources relies on the use of a random number generator. This
capability can be efficiently provided by a hardware-based pseudo-random number
generator (PRNG) that provides a sequence of numbers. The sequence must have a
sufficiently long period so that its output patterns are guaranteed to be extremely

23

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

unlikely to repeat in the context of the analysis, thereby avoiding correlation be-
tween events whose outcome must depend on true probabilities. The degree of
randomness attained by the generator can be measured with standard tests such
as the one used by the US National Institute of Standards and Technology [33].
The multiply-with-carry PRNG is known to provide the above properties [25] and
thus it is our choice. Section 4.6 describes an efficient implementation of it.

M4: Freedom from timing anomalies Broadly speaking, a timing anomaly
is a counter-intuitive timing behaviour of certain hardware resources that may
cause existing WCET analysis to yield unsafe estimates if not properly accounted
for [24, 32, 34]. A processing resource is a source of timing anomalies when faster
execution in the resource may lead to an increase in the execution time of the
program overall. This is the case, for example, when a cache miss – the local worst
case – results in a shorter execution time than with a cache hit, because of the effect
of scheduling decisions in the use of some of the affected resources. The absence of
timing anomalies enables us to safely assume the worst-case latency for low-jitter
resources.
We want to design a processor architecture in which timing anomalies are excluded
by construction. To that end, we refer to [34] which argues that, from a hardware-
only perspective, no timing anomalies can ever occur in processors that do not allow
resource allocation decisions. A resource allocation is defined as the assignment
to hardware resources of either instructions or the micro-operations into which
individual instructions can be split on a pipelined architecture. Given a resource
allocation, ri, and a sequence of instructions, we say that a processor does not
allow resource allocation decisions if any variation in the latency of any instruction
of the sequence, does not change ri.

M2: Achieving truly time-randomised behaviour We regard any concrete
resource in a processor architecture as an abstract component that processes re-
quests for access or computation. Each such request has a distinct service time, or
latency. The latency of a resource is either fixed or variable. We term jitter the
difference between the best and worst possible latency of any such resource. We
classify pre-PTA resources depending upon whether they exhibit jitter or not.
We term jitterless resources these processor resources that have a fixed latency,
independent of the input request or of the past history of service. Many hardware
resources in current processor architectures can be classified as jitterless. Jitterless
resources are easy to model for all types of static timing analysis. Building the ETP
of a simple instruction that uses a single resource, requires knowing only whether
the resource in question is jitterless (information implicit in the instruction) or
whether the instruction is part of a sequence of instructions that must incur a
delay when using a jitterless resource (information implicit in the architecture).
With proper path and pipeline analysis, the types of the resources can be easily
determined. Of course, measurements obtained from program runs that only use
jitterless resources will perfectly capture their constant impact on execution time.
Other resources, for instance cache memories, have a variable latency: we call
them jittery resources ; their latency depends on their history of service, i.e., the
execution history of the program, the input request, or a combination of both. Let
us look at these dependences in isolation:

24

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

- Dependence on execution history. Some resources are stateful and their state
is affected by the processing of requests. If latency depends on the internal
state of the resource and this state is in turn affected by previous requests,
then we say that the resource latency depends on the execution history of the
program. With caches, the latency of an access request depends on whether
the access is a hit or a miss, which in turn depends on the sequence of previous
accesses to memory.

- Dependence on the input request. In this case, the latency is determined
by the data carried by the request. For a processor, these data are usually
encoded in the instruction that issues the request.

- Although very seldom, there might also be a combined dependence. An
instruction may use one execution-dependent and one input-dependent re-
source. For instance, a load instruction may execute on an architecture in
which the latency of the ALU – which all loads use to compute the effective
address – depends on the input data given. In this case the latency of the
load depends on its input op-code and also on the execution history when it
accesses the cache. In this case we consider the latency of the load to de-
pend on the input request as it imposes a greater burden, on a PTA-friendly
architecture, than its history-dependent part.

Jittery resources have an intrinsically variable impact on the WCET estimation
for a given program. The significance of this impact depends on the magnitude
of the jitter, the program under study, and the analysis method. A way to deal
with jittery resources in the absence of timing anomalies [32] is to assume that
all requests to those resources incur the worst-case latency. This is acceptable
if the cumulative impact on the WCET from assuming the worst-case jitter for
the resource is deemed low enough by the system designer. We term the jittery
resources with suitably low impact, low-jitter resources. The problem we must
address thus reduces to time-randomising the resources with high jitter: a hard
problem, but much smaller in scale than the full processor.

M1: I.i.d. timing behaviour Jitterless resources have constant latency, hence
their timing behaviour is intrinsically independent and identically distributed. For
low-jitter resources, we enforce the worst-case latency, so their upper-bounded tim-
ing behaviour also becomes i.i.d., so long as mandatory feature M4, absence of
timing anomalies, is supported. For high-jitter resources we redesign them so that
their timing behaviour depends on random events produced by our PRNG instead
of from any other source of variation, be it the initial state or the input data or
both.
It is obviously important to determine whether the claim of independence made
for a processor architecture can be sustained in reality. Several tests exist for
checking whether events are independent: in our experiments we use the Wald-
Wolfowitz test [4] that measures whether binary events are biased, or else they can
be considered random. The identical distribution hypothesis is tested by goodness-
of-fit tests, which compare two distributions and provide the degree of likeness. In
this work we use the Kolmogorov-Smirnov test [13], which is the one used most
often for comparing cumulative distributions, and thus serves our need well.

25

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

If all the mandatory features discussed above are fully and completely supported
in a processor architecture, then the execution times that are incurred at the level
of processor instructions during program runs are guaranteed to have the i.i.d.
property required by PTA. In Section 3.2.2 we show that we can combine processor
resources that meet our requirements in such a manner that the timing events
resulting from the execution of individual instructions that use any combination of
them can continue to be modelled as i.i.d. random variables. As a result, we can
construct ETP for all processor instructions and consequently apply SPTA.

MBPTA instead considers events resulting from the observation of end-to-end pro-
gram runs, at a higher level of granularity than that at which the i.i.d. hypothesis
is assured by construction. We must therefore differentiate the MBPTA argument
from SPTA. With MBPTA, the property of independence is indeed preserved at the
higher level of granularity because no source of dependence can exist between end-
to-end runs given that no state is retained in the processor, so long as no logical,
software-level, state is allowed to pass between any two such runs. The property of
identical distribution must be achieved in the way observations are made, outside
of the processor architecture. While PTA-imperfect implementations may prevent
an instruction from being considered i.i.d. in isolation from other instructions, ob-
servations for one instruction in the context of a preceding sequence of instructions
in a PTA-friendly processor indeed are identically distributed. Moreover, observa-
tions from outside a sequence of independent instructions (i.e., a program path on
a PTA-friendly processor) are identically distributed, too. Observations for a set
of paths are identically distributed if and only if they are drawn at random from
that same set of paths.

3.2 Probabilistically Modelling the Timing Behaviour
of Processor Resources

To produce the execution time distribution of a program, in order to determine its
probabilistic WCET for a given exceedance threshold, we must combine the ETP of
the resources used by the instructions executed by the program. In this section we
describe how the ETP for different processor instructions (and in general for any
execution component at other levels of granularity) are composed, how those ETP
are obtained for some particular arrangements of the resources, and how ETP are
obtained in the general case. We show how the probabilistically analysable timing
behaviour of each resource and of the program components that use them can be
combined into a probabilistically analysable compound behaviour. This enables us
to design a complete processor architecture that is PTA-friendly.

3.2.1 Assigning ETP to individual resources

As we have seen above, we only need to randomise the timing behaviour of high-
jitter resources. Let us examine the effect of doing that.

In order for a resource to be treated with PTA, the probability assigned to each
latency in the timing vector of the ETP for that resource must be a true probability.
Note that the hit/miss probability is different from the frequency of events. This

26

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

(a) Jitterless resource (b) Low-jitter resource (c) High-jitter resource

Figure 3.2: Probabilistic timing behaviour of a single instruction for each type of
resource

is best shown by an example: consider a resource R1 with
→
t1= {t11, t21}: latency

t11 in the timing vector would have a true probability p1
1 = 50% of occurrence if –

in the implementation of that resource – on every request to it we flipped a coin
and the request had latency t11 if we saw heads and t21 otherwise. In contrast, if

for a deterministic resource Ri=2, with latency
→
t2= {t12, t22} we observed that for

a given program 50% of the requests take t12 and 50% t22, we would have a 50%
observed frequency for each possible latency of that resource, but not a true 50%
probability. This is so because the outcome, and hence the latency, of each request
to that resource are fully deterministic: in this type of resource, information on
past events cannot be used to provide guarantees about the appearance of future
events because they are heavily dependent on the sequence of instructions.

For the purposes of PTA, the timing behaviour of jitterless, low-jitter and high-
jitter resources can all be described probabilistically by ETP. Figure 3.2 depicts an
ETP for each such type of resource. In each plot we show the relevant latencies of
a request to the resource type in question, where t1 = tm 4 is the minimum latency,
tM = tNi the maximum latency and {ti} with i = 2, .., Ni − 1 are latencies such
that ti 6= tm and ti 6= tM . For each latency we then show its true probability.

Jitterless resources have an ETP with a single latency with probability of 1 (vertical
bar in Figure 3.2(a)). The Probability Distribution Function (PDF) described by
the ETP, has a single point at tm. The Inverse Cumulative Distribution Function
(1-CDF) – otherwise known as exceedance function, which is the key product of
PTA – also has a single point at tM with value 0. For jitterless resources, the
probability of latency t > tm = tM is obviously 0.

Figure 3.2(b) depicts the probabilistic timing behaviour of a low-jitter resource. For
the purposes of this discussion, we assume that for this type of resource tm ≈ tM ,
hence tm = t1 ≈ t2 ≈ t3 ≈ tM = tNi = t4. For these resources we take the worst-
case latency instead of randomising the timing behaviour. The stripped bars in
Figure 3.2(b) show the observed frequencies and not the true probability of each
latency. The solid bar shows the safe ETP estimate assumed for resources of this
kind. Assuming the worst-case latency may indeed cause pessimism in WCET
estimation and thus also in our probabilistic bounding of it, but it also reduces
implementation complexity. As for jitterless resources, the probability of latency
t > tM ≈ tm is 0.

Figure 3.2(c) depicts the probabilistic timing behaviour of a high-jitter resource,

4When we talk about a single resource we omit the subscript that indicates the resource id.

27

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

which we time-randomise. The solid bars show true probabilities. In the fig-
ure, without loss of generality, we assume that the ETP of an exemplary time-
randomised resource is {0.5, 0.3, 0.1, 0.1} for

{
tm, t1, t2, tM

}
respectively. Notably,

ETP are discontinuous, which reflects the discrete nature of the latencies of the
resources we consider. In general, there are no constraints on the latency li that a
resource may have, other than li ∈ N.

We have seen how the timing behaviour of resources with no, low and high jitter
can individually be modelled probabilistically. In Section 3.2.2 we show how to
probabilistically compose the timing behaviour of multiple requests to one resource,
as well as for a request that needs to use multiple resources at the same time.
These notions help us construct a processor architecture that is probabilistically
analysable in the time domain.

3.2.2 Composing the ETP of different resources

One of the properties we gain from randomising the timing behaviour of high-jitter
resources is that composite ETP can be easily determined for different program
components which use those resources. This calculation is performed by computing
the discrete convolution (⊗) of the discrete probability distributions which describe
the latency for each request; this provides a single compound ETP representing the
timing behaviour of the combined set of requests. Given the ETP for two resources

Ri={1,2} in the form of (
→
ti,
→
pi) where

→
ti is the vector of execution times for the

resource, and
→
pi the probability for each of those execution times, the convolution

of the two ETP is defined as follows: (
→
tc,
→
pc) = (

→
t1 ⊗

→
t2), (

→
p1 ⊗

→
p2) where

→
pc(n)=

→
p1

⊗ →
p2 (n) =

∑∞
k=−∞ p1(k)× p2(n− k) and

→
tc results from the summation of the

contributing latencies, which, for all k such that p1(k) × p2(n − k) 6= 0 is defined
as tc(n) = t1(k) + t2(n− k).

The convolution of two ETP requires that the probability of a request taking a
given number of cycles is independent of the history of latencies that have occurred
in the involved resources, due to previous requests. With our PTA technique,
probability distributions of requests that are not independent cannot be convolved.
In fact, other methods exist (cf. e.g., [15]) which assume full dependence between
probability distribution functions, but we do not consider them here.

ETP reflecting the probabilities of compound requests must be produced to rep-
resent all the possible timing interactions in the use of the composed resources. If
those ETP should be generated for SPTA, it is imperative to eliminate all archi-
tectural dependences. For use with MBPTA, ETP need not be determined so long
as they are known to exist at some level of granularity in the execution stack below
the level at which the observations are made and the i.i.d. property of those ETP
is preserved across all of the operation that occurs in between the corresponding
two levels of abstraction: this will be sufficient for the observations to reflect the
effect of true probabilities of each resource for each request.

The convolution of ETP for requests that use jitterless resources leads to the step-
like ETP shown in Figure 3.2(a), with the transition from probability 1 to 0 oc-
curring at time instant t′m = t1m + t2m = t′M = t1M + t2M . The case for requests
using low-jitter resources, where latency is set to the worst case without time ran-
domisation, is analogous to the transition from probability 1 to 0 occurring at

28

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 3.3: Composition of the ETP of two requests using time-randomised resources

t′M = t1M + t2M .

The convolution of the ETP of a single request using one possibly composite time-
randomised resource R1 (with e.g., ETPR1 = {{1, 3, 5}, {0.3, 0.4, 0.3}}) together
with the ETP of a single request using a jitterless or low-jitter resource R2 (with

e.g., ETPR2 = {{1}, {1.0}}) leads to a new ETP whose probability vector
→
pc is the

same as for ETPR1 and whose latency vector
→
tc is the one resulting from adding

the single latency in ETPR2 to each of the latencies in the timing vector of ETPR1 :
for the given values, we thus have ETPRc = {{2, 4, 6}, {0.3, 0.4, 0.3}}). Hence the
shape of the CDF of the combined request remains the same as for the request
using the time-randomised resource, but with increased indices in the x-axis.

Finally, the architectural composition of multiple requests using time-randomised
resources leads to a new ETP where the cardinality of the probability vector is
increased up to the product of the cardinality of all probability vectors involved.
Figure 3.3 shows the result of convolving two requests using the resource whose
ETP is shown in Figure 3.2(c), whose probability vector, without loss of gener-
ality, we assumed to be {0.5, 0.3, 0.1, 0.1}. When the two requests are composed,
the probability of the worst-case latency, which happens if both requests take the
longest latency, rapidly tends to 0. In this case, and with just two requests, the
probability of the worst-case latency is 0.01. With N requests this probability
would be 0.1N .

3.3 Computing the ETP of execution components
using multiple time-randomised resources

We clarified that the ETP for an individual execution component at the level of
execution granularity of interest (a processor instruction in this work) must be
statically generated for use with SPTA. Whenever the request uses resources se-
quentially (Figure 3.4(a)), the relevant ETP can be generated simply by convolving
the ETP of the resources involved in the execution, regardless of whether they corre-
spond to time-randomised or non-time-randomised resources. In practice, resources
in a processor may be arranged in a variety of ways. A typical arrangement con-
sists of setting them up in parallel, as shown in Figure 3.4(b). Examples of parallel
resources are some particular designs of cache memories and translation look-aside
buffers (TLB), where cache access and address translation can occur in parallel. In

29

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

(a) sequential resources (b) parallel resources

Figure 3.4: Different resource arrangements

case of parallel arrangements, the probability vector is still obtained by convolu-
tion. However, the latency vector, instead of being the addition of the latencies of
the two probabilities being convolved, is the maximum latency among those of the
probabilities being convolved. This is illustrated with the following example. Let
the ETP for resources R1 and R2 be ETPR1 = {{1, 4}, {0.4, 0.6}} and ETPR2 =
{{2, 3}, {0.3, 0.7}} respectively. The probability vector obtained from their parallel
composition in resource Rc is {0.12, 0.28, 0.18, 0.42}, whereas the latency vector is
{2, 3, 4, 4}, which can be simplified as ETPRc = {{2, 3, 4}, {0.12, 0.28, 0.6}}.
In the general case, resources can be arranged in many different manners and multi-
ple requests may be processed simultaneously in different resources. For instance,
a pipelined processor may process different requests in different stages and each
request may use different sequential or parallel resources in each stage. Moreover,
stalls across stages may exist due to resource contention, and those stalls can be
difficult to predict a priori if some buffering is in place across stages. This situa-
tion may make ETP generation intractable because, in order to generate the ETP,
we may have to consider all instructions of the program and all resources of the
processor simultaneously. However, as long as all sources of jitter can be described
as random events we still can guarantee that each potential execution time occurs
with a probability resulting from the combination of multiple random events and,
therefore, even if generating the ETP is unaffordable, we do know that the ETP of
the processor resources exist. SPTA methods may thus indeed become unaffordable
for the general case, unless pessimistic assumptions are made. For instance, SPTA
may split the execution of the program into small blocks of instructions (e.g., basic
blocks, functions, etc.) and generate the ETP by increasing all latencies by the
maximum latency that the pipeline may take to empty. Notably, such an assump-
tion is safe in a processor free of timing anomalies, as per our mandatory feature
M2. Conversely, MBPTA methods only need to know that ETP exist, but need not
generate them. A sufficiently large number of observations made with the precau-
tions discussed at the bottom of Section 3.1.3 will capture all probabilistic events
with enough confidence to enable MBPTA methods to obtain accurate bounds on
the execution time for those exceedance probabilities of interest.

3.4 A Taxonomy of Processor Resources

We have shown how some resources may introduce probabilistic jitter that can
be easily considered with PTA methods, whereas other resources introduce de-
terministic jitter that needs to be removed (by time randomisation; by enforcing
the worst-case jitter by hardware or by the way the observation experiments are

30

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

designed). However, some other resources introducing jitter may not be easily clas-
sified into these two categories. For instance, this is the case of buffers. If a buffer
is full it may create a stall that propagates backwards, thus potentially increasing
the execution time. However, this particular type of resources is not the source of
the jitter but a pure propagator. Therefore, if all jitter occurring in a processor
is due to resources producing probabilistic jitter, buffers will get full with a given
probability and will simply cause stalls with a given probability. Other resources
propagate jitter in a similar way. Although this is the intuition, next we proceed
to a more accurate taxonomy of resources so that the need for randomisation (or
lack of it) of the main resources in a processor (yet a single-core processor at this
stage of the project) can be understood.

For that purpose we perform an abstract classification of jittery resources based
on the source of their jitter. We illustrate such a classification with a particular
example of a simple processor. Then the special case of the branch predictor is
described in detail and finally, the full taxonomy of resources is provided.

3.4.1 Abstract Classification

We classify the potential sources of jitter into 6 groups depending on the com-
bination of two factors: (i) whether the jitter is produced solely by the current
event under consideration (no history dependence) or by the combination of previ-
ous events and the current one (history dependence); and (ii) whether the jitter is
deterministic, probabilistic or simply propagated regardless of its source.

Let us first illustrate the general cases that result from the above taxonomy, with
some examples before classifying processor resources in our concrete case:

- No history dependence + deterministic jitter. This could be the case of a func-
tional unit whose latency is data dependent. In this particular case we typically
enforce the unit to experience always its maximum latency as explained before.

- No history dependence + probabilistic jitter. We do not have any particular
realistic example of such a case at this point although some resources might fall
into this category in the next phase of the project.

- No history dependence + propagated jitter. In principle such a resource cannot
exist because it does not produce any jitter by itself and cannot propagate any
jitter if it is history independent.

- History dependence + probabilistic jitter (HD+PJ). This is the typical case of a
time randomised cache. The sequence of events between two consecutive accesses
to the same data together with the initial cache state, determine the probability
vector. If such sequence of events is fixed, then the outcome of each access to
this particular resource can be modelled with a random variable, as needed for
PTA. We address the meaning of “fixed sequence” below.

- History dependence + deterministic jitter (HD+DJ). This is the case of a cache
implementing modulo placement and LRU replacement. Events may experience
different latencies based on previous events, but given an initial state and a
sequence of events the latency can be just one.

31

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 3.5: Simple processor design used in the example

- History dependence + jitter propagation (HD+JP). This is the case of a hardware
buffer. A particular instruction may spend a different number of cycles in a
buffer depending on previous events. However, as we explain below, given a
fixed sequence of events, without data-dependent timing variations and fixed
initial conditions, the jitter propagated by this type of resources can also be
modelled with random variables.

A fixed sequence of events refers to a sequence of instructions, memory accesses,
etc. so that exactly the same events occur in the same order. The time that
may elapse between two consecutive events may change. In our processor the
sequences of events that all history-dependent resources observe are fixed given
our assumption that the user determines the relevant paths that will be covered
by the measurement runs. Note that nothing can be said for the paths that have
not been observed. That is, once fixed a path of the program under consideration,
the processor events observed in that path are the same for every traversal (run)
of that path. By definition, the events observed in any subpath of that path are
also the same for every traversal. This property is key to ensure that the observed
behaviour during the testing phase can be used to derive the behaviour during
deployment of the system. This is the case for a cache that observes exactly the
same sequence of accesses in all runs (observations) of a particular relevant path.

3.4.2 An Illustrative Example

Let us clarify why HD+JP resources do not violate the i.i.d. property required
for PTA in a processor whose all sources of jitter are probabilistic. We start with
an example to later extend the discussion to a more complete formulation. For
the purpose of this example we assume an architecture with two stages (fetch and
execute) that respectively access to time-randomised instruction and data caches
(IL1 and DL1 for short). These caches have a probabilistically-modellable timing
behaviour. In between both stages there is a 2-entry buffer (see Figure 3.5). In
case of hit in both caches and if the buffer is available, an instruction takes 3 cycles:
Fetch (F), buffer (b) and Execute (E). The buffer is our HD+JP resource in the
focus of this example.
Further assume that we execute a program with four instructions as shown below,
whose hit and miss probabilities for each cache are shown next to each instruction.
For this example, i1 always hits in IL1 and has a 0.9 hit probability in DL1. The
remaining instructions do not access DL1.
In this code example, i1 may introduce some delay in the execution of the program
when accessing DL1: if it misses it will cause a longer delay than if it hits. Note
that the IL1 hit probability of i1 is 100%. i2 and i3 may introduce some delay
when accessing IL1 only since they are not memory operations.

32

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 3.6: Potential chronograms based on the outcome of the different cache ac-
cesses

i 1 : LD (1 . 0 , 0 . 0) ; (0 . 9 , 0 . 1)
i 2 : ADD (0 . 7 , 0 . 3) ; (−−−)
i 3 : ADD (0 . 6 , 0 . 4) ; (−−−)
i 4 : ADD (1 . 0 , 0 . 0) ; (−−−)

Next, we depict the 8 different chronograms for each one of the combinations of
hits and misses in IL1 and DL1 of all 4 instructions (see Figure 3.6). In particular,
we use the vector <DL1i1, IL1i2, IL1i3> for the sake of simplicity in describing
the outcome of each DL1 and IL1 access, being H a hit and M a miss. Note that
i1 and i4 have IL1 hit probability of 100% so for this reason IL1i1 and IL1i4 do
not appear in the vector.
Given a set of fixed initial conditions (empty state of the pipeline) each different
combination of probabilistic events (DL1 and IL1 accesses) leads to exactly one
fully-deterministic behaviour of the buffer, which is our HD+JP resource. If we
compare different outcomes of probabilistic events, we observe that the buffer in-
troduces a different number of stalls (0, 2, 4 or 6 cycles) for each combination
of probabilistic events. The number of stalls and the particular cycles in which
the stalls occur may repeat in different sequences of outcomes of the probabilistic
events occurring (for instance cases <M,H,M> and <M,M,H> above); however,
for a particular sequence of those events the behaviour of the buffer is fully de-
terministic: all data dependences, which are given by the instructions that are
executed and their order, is fully determined by the code being executed. This
code is known based on the assumption that relevant paths are determined by the
user. Therefore, HD+JP resources (the buffer in our case) cannot create further

33

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 3.7: Processor Stage Graph

jitter but simply propagate it or, in other words, given a sequence of outcomes
for all probabilistic events the delay of the HD+JP resources is fully determinis-
tic. Therefore, HD+JP resources can affect the duration of the program under
each combination of probabilistic events but cannot affect the probability of each
combination.

In order to better understand this phenomenon, in Figure 3.7 we show the same
example shown before, but describing the processor state in each cycle. As shown,
variability in the execution time increases the number of potential probabilistic
states that we can reach; however, such variability can only be introduced by
probabilistic events. Conversely, buffer stalls (grey boxes) cannot produce such
effect and therefore have no effect on the probability of each execution time to
occur.

3.4.3 The Case of the Branch Predictor

Branch predictors may introduce jitter because of different sources. The fact that
the prediction for the particular branch to be predicted is in the predictor is a
probabilistic event if we implement a random-placement random-replacement pre-
dictor. Conversely, once the prediction is found, the fact that the branch is prop-
erly predicted is a deterministic event. Such a deterministic event could affect
the properties required for PTA; however, this is not the case with the following
assumptions:

34

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

- Initial conditions are always the same. For instance, the predictor can be reset
at the beginning of the execution setting all entries to a predefined value (e.g.,
branch taken).

- The sequence of events is always the same. Given that relevant paths are given,
we know that a relevant path determines which instructions and in which order
will be executed. Therefore, the sequence of branches and their outcome is fully
deterministic for a given relevant path and cannot introduce variations into the
sequence of outcomes provided by the branch predictor.

Thus, if those two assumptions hold (fixed initial conditions and relevant paths
given) the only source of variations are random evictions, whose effect can be
modelled probabilistically as for any other randomised resource.
Collateral effects. Branch prediction has collateral effects in other resources
because in case of a misprediction instructions from the mispredicted path can
be fetched and partially executed, thus affecting the state of caches and buffers.
While this effect is undesirable in general, it occurs with a given probability be-
cause the fact that a branch finds its prediction and whether such prediction was
properly updated depends only on probabilistic events if all sources of jitter are
probabilistic. Therefore, even the effects of fetching and executing instructions
from a mispredicted path can be modelled probabilistically.
Even if such effects are probabilistic, one might want to mitigate them to some ex-
tent to prevent cache contents to be modified. This could be easily done by stalling
cache accesses (and thus the corresponding stages) on a cache miss performed by
a speculative access. For instance, if a branch has not been resolved yet and our
processor tries to fetch an instruction not present in cache, we can simply stall such
operation until the branch is resolved. Once resolved, if it was properly predicted
the instruction is fetched and a cache line in the instruction cache is evicted. Oth-
erwise, the instruction is simply discarded together with the other instructions in
the mispredicted path. Note that by proceeding this way all speculative accesses
hitting in cache are allowed to proceed; however, they do not modify any state
in a random-placement random-replacement cache because no information is kept
about history for replacement purposes as in the case of LRU replacement caches.

3.4.4 Hardware Resource Taxonomy

We consider a pipelined processor with in-order fetch, dispatch and retirement of
instructions (see Figure Figure 3.8) 5. We consider a pipelined processor with in-
order fetch, dispatch and retirement of instructions. Fetch and execution stages
are equipped with first level instruction and data cache memories respectively (IL1
and DL1 caches for short). Instruction and data translation look-aside buffers
(ITLB and DTLB) can exist. Similarly, second-level caches (L2) can be also in
place, either specific for instructions/data or shared. Buffers across pipeline stages
are deployed to mitigate stalls. Similarly, a store buffer is provided to allow store
instructions retire quickly without stalling the pipeline.
Table 3.1 lists the resources with non-fixed latency considered in our architecture,
the kind of state they keep and the effect that other software could cause on them.

5Our processor pipeline is fully described in the result section of D3.4. Here we provide an
overview of its main components

35

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 3.8: Processor components considered within PROARTIS

36

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Table 3.1: Hardware Resource Taxonomy. Prob. HD stands for probabilistic history
dependence and DD HD stands for data-dependent history dependence

Resource Prob.
HD

DD
HD

Influenced
by

Details

Instruction
cache (IL1,
L2, ITLB)

Y N(*) All
instructions

Prob. HD. All instructions age resources contents. Knowing
the number of instructions (or a bound) and the amount of
reuse allows accurately considering their impact.

Data cache
(DL1, L2,
DTLB)

Y N(*) Memory
instructions

Prob. HD. All load and store instructions age resources
contents. As for the instruction cache, the number of such
instructions is relevant.

Store
buffer

N Y All
instructions

Function. Data to be stored in the memory system waits in
the store buffer until ports are available.
DD HD. The state of the store buffer depends on when the
last store instructions reached the buffer, which depends also
on the instructions executed in between those stores. The
worst case is a full store buffer. An upper-bound of the largest
latency required to empty the store buffer can be obtained.

Pipeline
buffers

N Y All
instructions

Function. Buffers may exist between pipeline stages to mit-
igate pipeline stalls.
DD HD. All instructions may be stored in those buffers at
any time. Their behaviour is analogous to that of the store
buffer.

Other
buffers

N Y All
instructions

Function. Buffers may exist anywhere. For instance, be-
tween different cache levels, in a memory controller, etc.
DD HD. Potentially those buffers could be full when the
program is resumed. Upper-bounding the latency to empty
those buffers can be done.

Branch
predictor

Y Y(*) Conditional
branches

Function. Predicts whether to jump or not. A table with
the prediction is typically used.
Prob. HD. All conditional branches age its contents and
may replace entries. In that sense behaves as a cache.
DD HD. If predictor tables (structures) are tag-less, you can-
not check whether an eviction has happened. If the predictor
keeps tags identifying the branch they predict, then data (the
prediction) cannot be modified by any other instruction other
than the instruction that wrote that entry. This is so because
any other instruction trying to modify an entry will simply
evict it because its tag will be different (it will correspond to
a different branch instruction). Otherwise, tag-less predictors
may allow data to be modified, but the effect cannot be worse
than replacing the entries. Therefore, the probabilistic part is
implicitly a bound of the data-dependent part.

Branch tar-
get buffer
(BTB)

Y Y(*) Indirect
branches

Function. Some branches need their destination address to
be computed dynamically, so a BTB may be used to predict
such an address.
Prob. HD. Whether the branch finds its prediction in the
BTB or not is analogous to the case of the cache. All indirect
branches age the BTB.
DD HD. Data-dependent modifications of the state can only
occur if the interfering software executes part of the code of
the relevant path under consideration. In such case the cor-
responding entry is not replaced but potentially modified. Its
worst-case impact is bounded by the probabilistic evictions.

Buses
(L1/L2,
L1/memory
controller,
etc.)

Y N(*) All
instructions

Prob. HD. All instructions can initiate a memory request
(e.g., an instruction cache miss). Our architecture will grant
bus access in a probabilistic way.

(*) In general, if instructions from execution that preceded that of the current unit of analysis (program,
in classic terminology) have completed, there cannot be any residual data-dependent effect. However, in
a pipelined processor, instructions of different units of analysis executed consecutively can coexist in the
pipeline and some stalls can occur if the resource is still in use. If those different units of analysis are analysed
separately their WCET estimates consider the finalisation of the last previous instruction, as if those units
of analysis did not overlap their execution at all. Therefore, stalls due to interleaved execution of multiple
units of analysis are upperbounded by using their individual WCET estimates in a processor free of timing
anomalies.

37

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

38

4

The PROARTIS Random Cache:
Random Placement and Random
Replacement Policies

This section evaluates different cache designs that meet the PTA requirements.
Caches are of prominent importance to boosting average performance since they
hide the long latency of memory operations, and it is one of the main processor
resources of interest to WP1 in PROARTIS.

Caches typify the problems that PROARTIS tries to overcome. Providing tight
WCET estimates in the presence of caches is hard, since the latency of a particular
memory operation strongly depends on the previous memory operations, as well as
the cache design itself. Several static WCET analysis methods have been devised
to provide WCET estimations for systems with caches [14] [27] [23] [31]. Although
those methods are sound and safe, they require detailed knowledge of the sequence
of cache accesses in order to provide tight WCET estimations: by keeping the cache
state at any point in the program, the analysis can precisely determine whether
a memory access will be a hit or a miss. However, modelling all possible cache
states is extremely costly, as it requires knowledge of all the memory accesses
performed by the program under study. Moreover, due to the increasing complexity
in the software design, the effort to acquire knowledge about execution history
of a program significantly increases [26]. When the required knowledge is not
available, pessimistic assumptions must be made by the analysis. As a result, the
net effect is that the WCET estimations in the presence of caches may become
overly pessimistic. Therefore, PTA has emerged as an alternative to reduce the
amount of information required to perform WCET analysis while providing sound
results.

Unfortunately, the properties required by PTA are not achieved with current pro-
cessors whose operation cannot be modelled with true probabilities, consequently
breaking the fundamental assumptions required by PTA. At the cache level, the
deterministic behaviour of placement (e.g. modulo) and replacement (e.g. least
recently used, LRU) policies makes memory operations depend on the execution
history of previous memory accesses in a non-probabilistic way.

This section present several cache analysis designs that fulfil the PTA properties
and allows modelling the timing behaviour of memory operations with true prob-
abilities. That is, there must be a distinct probability of each cache access to

39

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

hit/miss. It is also needed that the timing behaviour of each memory access is
independent from previous accesses or this dependence can be measured proba-
bilistically.
The key solution explored in this section is to introduce randomisation in the cache
placement and replacement policies. While random replacement has been proposed
and used in the past, existing placement functions have a purely deterministic be-
haviour and thus, they cannot be used in the context of PTA because each po-
tential placement leads to a different behaviour and there is no way to determine
the probability of each placement to occur at design time. Hence, we propose a
new cache design with random placement that enables the use of affordable set-
associative and direct-mapped caches in the context of PTA. The main rationale
behind such a design is the fact that the placement function is deterministic during
the execution of the program, so cache lookup can be performed analogously to
deterministic-placement caches, but placement is randomised across executions by
modifying the seed of the parametric hash function used for set placement. This
way, each memory access has true hit/miss probabilities and i.i.d. timing behaviour
is achieved as needed for PTA. This design also reduces, or even eliminates, depen-
dence across memory accesses, hence reducing the amount of information required
by the analysis.
Another objective for our cache design is average performance, which affects key
metrics in real-time systems such as energy consumption. Overall, the main con-
tributions of this section are the following:

- A probabilistic analysis of the effect of random replacement and placement poli-
cies in the timing behaviour of different cache organisations including direct-
mapped, set-associative and fully-associative caches.

- A novel efficient cache design implementing random placement suitable for PTA.
It is also combined with random replacement showing how both approaches
collaborate synergistically. Our design is proven to have low energy consumption
and provides comparable performance to that of conventional modulo placement
and LRU replacement set-associative cache designs.

- Hardware-efficient implementations of the parametric hash function used for ran-
dom placement and a Pseudo Random Number Generator used for random place-
ment and replacement.

4.1 Timing Behaviour of Random Caches

Despite its well-known performance benefits, cache memories pose a serious chal-
lenge to timing analysis because the latency of a memory request depends on which
level of the memory hierarchy the required datum actually resides, which depends
on the execution history. That is, because of the temporal and spatial locality
characteristics of the memory hierarchy, a memory object resides in cache if: (1)
the memory object has been already fetched; and (2) the memory object has not
been evicted by another request.
A cache is conceptually a matrix of S ·W cache lines 1 (cells) arranged in S sets

1To reduce the traffic overhead between the main memory and the cache consecutive memory

40

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

(conceptually rows) and W ways (conceptually columns). The set in which a piece
of data is placed in cache is determined by the placement policy. The placement
policy implements a hash function that uses certain bits of the memory address,
called index, to map each particular cache line into a specific cache set. Since
different cache lines can collide into the same cache set, cache sets consist of a
given number of lines called ways. The size of each cache set is called the W-way
set-associativity of the cache. The way in which a cache line is placed into a cache
set is determined by the replacement policy, which selects, among all the ways in a
given set, which cache line is evicted to make room for the new cache line. Overall,
the timing behaviour of a cache is determined by its placement and replacement
policies, and the exact cache state can only be determined if the complete list
of memory addresses accessed by the program (which is part of the program’s
execution history) is known by the analysis.
The use of random placement and replacement allows constructing ETPs that
define the probability of hit/miss of each memory request. That is, the timing

behaviour of every memory access can be defined by the pair of vectors (
→
t ,
→
p

) = {thit, tmiss}{phit, pmiss}, where thit and tmiss are the latency of hit and miss
respectively and phit and pmiss the associated probability in each case.
Thus, the existence of the ETPs ensures that the execution times are probabilistic
and therefore the system fulfils the i.i.d. property. We provide means to com-
pute the ETP of memory operations when implementing only random replacement
(fully-associative caches), only random placement (direct-mapped caches) and a
combination of both (set-associative caches).
Finally, in order to implement a random placement and replacement policy that
accomplishes with PTA requirements, a proper random number generator is needed.
Details on how to implement it are provided later in Section 4.6.

4.2 Random Replacement

The random replacement (RR) policy must ensure that every time a memory re-
quest misses in cache, a way in its corresponding cache set is randomly selected
and evicted to make room for the new cache line. This ensures that (1) there is
independence across evictions and (2) the probability of a cache line to be evicted
is the same across evictions, i.e. for a W -way associative cache, the probability for
any particular cache line to be evicted is 1

W
for each set.

In the remainder of this subsection we consider a fully-associative (FA) cache with
W ways implementing such a RR policy. Note that FA caches do not use any
placement policy as they comprise a single set. As a result, the probability for any
cache line to be evicted is 1

W
on every cache miss.

To develop our argument, let us assume a FA cache with two ways W = 2. Further,
assume a sequence of m = 4 memory accesses A, B, C, A, having u = 3 distinct
memory addresses mapped to different cache lines, and that initially the cache
contains B and C, each one in a different way. Figure 4.1 shows all possible cache
states with their associated probabilities after executing the sequence A, B, C,
A. Black boxes represent cache states in which a miss occurs, while white boxes

objects are grouped into blocks called cache lines

41

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 4.1: Probability tree of the sequence A, B, C, A

represent cache states in which a hit occurs. For instance, if the first access to A
evicts C (leftmost branch in the tree), B survives and the access B hits in cache.
In that case, the next access to C will miss in cache and may or may not evict A
(a similar reasoning can be followed for the other subtrees). Overall, the second
occurrence of A will hit in cache if and only if the replacement policy does not evict
A when B and C are accessed. This means that the second occurrence of A has a
hit probability of 3

8
.

A similar analysis was made in [36], but assuming that each access causes an
eviction regardless of whether it hits or misses. Such an approach has shown to
simplify the analysis at the expense of lowering hit probabilities artificially and,
therefore, increasing the likelihood of high execution times in the execution time
distribution obtained. In our case, for a sequence A,B1, B2, ...Bx, A, the probability
of the second occurrence of A to be a hit, and so of A to survive, can be formulated
as follows, where P{BievictA} is the probability that Bi does not evict A:

PhitA = P{B1evictA} · ... · P{BxevictA} (4.1)

In which each of the P{BievictA} depends on whether Bi is a miss or a hit: A is not
evicted if Bi hits. If Bi misses, A is not evicted with a probability of (W − 1)/W .

P{BievictA} = PhitBi
+ PmissBi

· W − 1

W
(4.2)

The corresponding ETP that models the probabilistic timing behaviour of the cache
based on the history of previous memory accesses is the following:

ETP (A) = {thit, tmiss}{PhitA , 1− PhitA} (4.3)

Therefore, the use of random replacement policy allows to derive an ETP for each
memory operation, thus enabling PTA. In the results presented in deliverable D3.4
we show that (1) the observed execution times of a FA cache with RR match those
of the convolution of the ETPs of each memory request derived as shown above; and
(2) the resulting execution times can be modeled with i.i.d variables, for which we
use the proper statistical tests: Kolmogorov-Smirnov [13] for identical distribution
and the Wald-Wolfowitz [4] for independence.

42

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

4.3 Random Placement

The random placement policy we are after has to ensure that the cache set in which
a cache line is mapped is randomly selected. As a result, each cache set has exactly
the same probability of being selected and this selection is independent of previous
ones. Hence, assuming a cache with S sets, the probability for a cache set to be
selected is 1

S
.

One fundamental difference between placement and replacement policies is that
placement assigns sets to cache lines based on the index bits of the memory address.
As a result, if the placement policy assigns two memory addresses to the same cache
set, they will collide for the whole execution. Instead, the replacement policy has
the freedom to allocate the new fetched cache line in any cache way, independently
of the memory address. Hence, on every access an associative search is done in all
ways of a set, so on evictions the new data can be placed in any way. Instead, the
set is determined by the address, so the mapping between the address and the set
(placement) has to be fixed.
To deal with this deterministic nature by randomising the timing behaviour of the
placement policy, we propose a new parametric hashing function that makes use
of a random number generated by a pseudo-random number generator (PRNG),
described in Section 4.6. Our hash function, given a memory address and a random
number called random index identifier (RII), provides a unique cache set (mapping)
for the address that is maintained along the execution. If the RII changes, the cache
set in which the address is mapped changes as well. A fundamental property of
our proposal is that, given a memory address and a set of RIIs, the probability of
mapping that address to a given cache set stays the same, i.e. 1

S
. The hardware

implementation of our random placement policy is detailed in Section 4.6.
Being able to quantify the probability of each memory address to be mapped into
a given cache set, and so conflicting with other memory addresses, is fundamental.
Given u different memory objects and S cache sets, we define cache layout as the
mapping resulting from assigning the u memory objects into the S cache lines.
Thus, every time the program is executed, the PRNG generates a new RII that
leads to a new random mapping function corresponding to a cache layout. Different
cache layouts cause different cache conflicts among memory addresses, resulting
in different execution times. In general, the number of possible cache layouts is
given by Su, where S is the number of sets and u the number of distinct memory
addresses.
To develop our argument let us assume a random placement direct-mapped cache
composed of S = 2 cache sets, where no replacement policy is needed and hence,
only the placement determines the cache layout and so the execution time. Ta-
ble 4.1 identifies all possible cache layouts of a program consisting of u = 3 memory
objects mapping into different cache lines (A, B, C, A). The subscript in each ad-
dress in the first column indicates the cache set on which each address is mapped,
0 or 1 in this example.
With random placement we can derive the probability of each cache layout to
occur. The column labelled as Playout in Table 4.1 shows the probability of each
cache layout to happen: The probability of the cache layout in which A, B and C
are mapped into the same set (A0B0C0 and A1B1C1) is (1

2
)3 each. Similarly, the

probability of the cache layout in which A is mapped in a different entry to B and

43

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Table 4.1: Possible cache layouts for the different accesses of the sequence A, B, C
in a idealised random cache with two lines.

Cache layout Conflicts (id) Playout

A0B0C0 A, B and C (1) (1
2)3

A0B0C1 A and B (2) (1
2)2(1− 1

2)
A0B1C0 A and C (3) (1

2)2(1− 1
2)

A0B1C1 B and C (4) (1− 1
2)3

A1B0C0 B and C (4) (1− 1
2)3

A1B0C1 A and C (3) (1
2)2(1− 1

2)
A1B1C0 A and B (2) (1

2)2(1− 1
2)

A1B1C1 A, B and C (1) (1
2)3

C (A0B1C1 and A1B0C0) is (1− 1
2
)3.

However, we are not interested in all cache layouts, but only in those that may
produce different execution times. For instance, in Table 4.1, cache layouts A0B0C1

and A1B1C0 result in exactly the same cache conflicts (and so the same execution
time), because they will experience exactly the same misses under both cache
layouts. We call those cache layouts generating different conflicts cache conflict
layouts. The total number of cache conflict layouts is given by the uth moment of
a probability distribution of random permutations [16]:

E(Xu) =
S∑

j=1

S(u, j) (4.4)

where X is the random variable that models the cache behaviour, i.e. the random
placement policy, and S(u, j) is the Stirling number of the second kind [6] with
parameters u and j. In other words, the uth moment is the number of partitions
of u unique memory addresses into no more than S cache sets. Thus, E(Xu)
provides the number of unique cache conflicts among the u memory addresses. In
the example above, the number of possible cache conflict layouts is 4, identified by
a number in parenthesis in the second column of Table 4.1.
With this, we can compute the probability of each cache conflict layout and hence
the probability of its resulting execution time for a given program. If we consider
the example shown in Table 4.1, and we assume a hit latency of 1 cycle and a miss
latency of 10 cycles, we can derive the following probability distribution function
for the observed execution times: {(31, 40), (0.25, 0.75)}. The cache conflict layouts
(1), (2) and (3) lead to an execution time of 40 cycles with an associated probability
of 0.25 each. The cache layout (4) leads to an execution time of 31 cycles with an
associated probability of 0.25.
In an arbitrary sequence A,B1, B2, ...Bq, A where ∀i, j : i 6= j and Bi 6= Bj, the
probability of the second occurrence of A to survive (and so of being a hit) is
determined by those cache layouts in which the q objects in between are placed in
a different cache set to A. If we consider that A is placed in a particular entry, the
number of cache layouts in which the other q objects are placed in different cache
sets is (S − 1)q: the q entries can be placed in all entries except where A is placed.
Because A can be placed in any position, the number of cache layouts in which A
survives is (S − 1)q · S. Therefore, and considering that the number of possible
cache layouts is determined by Sq+1, the probability of the second occurrence of A

44

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

being a hit can be computed using the following equation:

PhitA =
(S − 1)q · S

Sq+1
=

(
S − 1

S

)q

(4.5)

The reuse distance of A, defined as the number of unique addresses (q) between
two occurrences of the same memory address, determines how likely it will result in
a hit/miss. The higher the q-distance is between two occurrences the less likely is
the second occurrence of A to survive. For instance, A is more likely to be evicted
in the sequence A, B, C, A (q = 2) than in the sequence A, B, B, B, B, B, A
(q = 1).
To sum up, random placement guarantees by design that an ETP per processor
instruction (memory request) exist. Although the resultant ETP is not independent
of previous execution history, its dependence can be characterised probabilistically
through q, fulfilling the platform requirements introduced in Section 2.2.2.

ETP (A) = {thit, tmiss}{PhitA , 1− PhitA} (4.6)

As in the case of random replacement, in Section 4.2 we show that for a given
program (1) the observed execution times of a direct-mapped (DM) cache with
RP correspond to the convolution of the ETPs of each memory request derived
from equation 4.5; and (2) the resulting execution times can be modeled with i.i.d
variables.

4.4 Generalisation of the Cache Layout Concept

Interestingly, the concept of cache conflict layout also applies to the random re-
placement policy. However, the random replacement policy does not keep the same
cache layout for the whole execution as the random placement policy does (fixing a
value for RII): due to the associative search done among all ways in a set on every
access, every time a cache line is fetched, it can be randomly mapped into a new
cache way, and so, the conflicts among different memory addresses change as well.
As a result, a new cache layout is built on every cache miss. This makes the number
of cache conflict layouts depend on the number of evictions, which is bounded by
the number of memory accesses (m). The total number of cache conflict layouts is
given by the mth moment:

E(Xm) =
W∑
j=1

S(m, j) (4.7)

X is the random variable that models the cache behaviour, i.e. the random replace-
ment policy, and S(m, j) is the Stirling number of the second kind with parameters
m and j. The mth moment is the number of partitions of m memory accesses into
no more than j cache ways.
For example, if we consider a program composed of the sequence of memory accesses
A B C D A B A C A D A B A C A D, in which u = 4 and m = 16, the number
of cache conflict layouts of a DM-RP and a FA-RR caches, considering in both
cases N = 4 cache entries (S = 4 cache sets in case of the DM and W = 4 cache

45

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

ways in case of the FA cache), is 15 and 178973355 respectively. As expected, the
number of cache conflict layouts is much higher for the FA-RR cache than for the
DM-RP one because the total number of memory accesses (m) is typically much
larger than the number of unique addresses (u). This has an important implication
in the worst-case performance of caches. Both caches have the same worst-case
cache conflict layout, i.e. the one in which all memory objects are mapped into the
same cache entry, resulting in systematic cache misses. However, the probability
of experiencing such cache conflict layout is much lower for the FA-RR cache. In
our example such probability is 1/15 and 1/178973355 for the DM-RP and FA-RR
caches respectively.

4.5 Putting All Together: Set-Associative Caches

¿From a performance perspective, Fully-Associative RR (FA-RR) caches are de-
sirable. However, at hardware level such designs may be complex to implement.
Instead, DM caches are less complex, though they may have low performance for
many programs. Set-associative (SA) caches trade off the benefits of both designs.
Broadly speaking, one can argue that, since both random placement and replace-
ment provide i.i.d. execution times, the composition of both approaches, in a
set-associative cache, fulfils the i.i.d. property as well. This section proves that
set-associative caches combining random placement and replacement also meet the
PTA requirements.
The ETP of a memory operation accessing to a S ·W set-associative cache with
random placement and replacement policies is the combination of the ETPs of both
policies. That is, the random placement will allocate memory objects into the S
sets with a probability of 1/S while the random replacement policy will evict a way
to allocate a new fetched cache line with a probability of2 1/W :

PhitA =

(
S − 1

S

)q

· (P{B1evictA} · ... · P{BxevictA}) (4.8)

Similarly to the computation of the ETP, the number of cache conflict layouts
can also be computed as the combination of the number of cache conflict layouts
provided by the placement and replacement policies. Thus, the number of cache
conflict layouts can be computed as the product of the uth and mth moments of a
probability distribution of random permutations:

E(Xm) · E(Xu) =
W∑
j=1

S(m, j) ·
S∑

j=1

S(u, j) (4.9)

E(Xu) and E(Xm) are the number of cache conflict layouts given by the random
placement policy and the random replacement policy respectively. Table 4.2 shows
the number of cache conflict layouts of three different cache configurations consid-
ering the example of previous subsection: a program composed of the sequence of
memory accesses A B C D A B A C A D A B A C A D, in which u = 4 and

2Note that this equation is not valid for direct-mapped and fully-associative caches, whose
analytical models are described in equations 4.2 and 4.5 respectively.

46

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Table 4.2: Number of cache conflict layouts for different cache setups

Cache configuration Number of cache layouts
DM-RP 15

SA-RP+RR 26224
FA-RR 178973355

m = 16. All cache configurations are composed of 4 cache lines: a 4-set DM-RP
cache, a 2-way 2-set SA-RP+RR cache and a 4-way FA-RR cache.
Overall, by using a set-associative cache with random placement and replacement
policies (SA-RP+RR) the probability of experiencing the worst-case performance
decreases rapidly with respect to the DM-RP: the number of cache conflict layouts
increases as the degree of randomness increases as well.

4.6 Hardware Implementation

This section describes how to implement both random placement and replacement
policies for direct-mapped, set-associative and fully-associative caches as well as
the PRNG required for random placement and replacement.

4.6.1 Pseudo-Random Number Generator

A PRNG has to produce a sequence of random numbers that must have sufficiently
high level of randomness to ensure that the events we are interested in can be
characterised by a true probability. PRNGs use one or more seeds to generate
new random numbers and update the seeds themselves. Any PRNG repeats the
sequence of numbers whenever the input seed repeats. While this phenomenon is
unavoidable in general, it is important that the sequence does not repeat often
enough to cause correlation between events whose outcome must depend on true
probabilities.
The Multiply-With-Carry (MWC) [25] PRNG satisfies these requirements. The
MWC PRNG produces random numbers based on the following set of equations:

seedz = 36969 · (seedz&65535) + (seedz � 16) (4.10)

seedw = 18000 · (seedw&65535) + (seedw � 16) (4.11)

RII = (seedz � 16) + (seedw&65535) (4.12)

where seedz and seedw are the seeds of the PRNG, & stands for a logical AND
function, � and � stand for logical bit shifts, and RII is the random num-
ber generated. Both seeds are updated to produce a different number every time
(Equation (4.10) and (4.11)). Recommended initial values for seedz and seedw are
362436069 and 521288629 respectively [25].
We provide an efficient implementation of MWC that we call PTA-MWC (Fig-
ure 4.2). PTA-MWC comes from the observation that logical AND, bit shifts and
16-bit additions required by MWC are simple operations in hardware. Multiplica-
tions are much more complex, however they can be transformed into a set of few
additions given that one of the operands is known and the number of ones is low.

47

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 4.2: Implementation of the PTA-MWC PRNG

(a) standard (b) proposed

Figure 4.3: Block diagram of the cache design.

For instance, 36969 (9069h) has only 6 bits set to one, so we can transform such a
multiplication into an addition of 6 16-bit numbers. Similarly, 18000 (4650h) can
be transformed into an addition of 5 16-bit numbers. Thus, each seed generation
requires 6 or 7 additions in total, which can be arranged in a binary tree of 3 levels
of 2-input adders. The resulting RII just selects a subset of the bits of the two
seeds, so it does not introduce any delay. The logical design of the PTA-MWC
PRNG is depicted in Figure 4.2.

We have implemented the PTA-MWC in the CACTI tool [28], which is an accurate
delay, energy and area model for cache memories. PTA-MWC delay and energy
are acceptable given that PTA-MWC delay fits within one cycle even for a 4GHz
frequency (0.2ns in 65nm technology), and its energy is well below the energy
required for a cache read operation (0.8pJ per random number versus 62pJ per
read access for a 4KB 16-byte line FA cache), which is a very low overhead given
that a random number is only required on an eviction.

The MWC is shown to be one of the highest-quality PRNGs by means of the test
battery provided by the US National Institute of Standards and Technology [33].
Those tests evaluate the quality of the bit sequences produced by the PRNGs by
studying the distribution of ones and zeros, their patterns, whether subpatterns
repeat, etc. The MWC PRNG passes 187 out of the 188 tests proposed (99.5%).
Other PRNGs provided together with the test battery have also been studied for
comparison purposes and none of them achieved a higher pass rate. The period
of MWC is huge (260). Assuming a processor operating at 1GHz and 1 random
number generated per cycle, the random number sequence would take 36 years to

48

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 4.4: Parametric hash function proposed for the RP cache.

repeat.

4.6.2 Random Replacement Policy

The most relevant element of a random replacement policy is the hardware gener-
ating random numbers which selects the way to be evicted on a miss. Due to the
limitations of hardware designs and the testing procedures, real random number
generators are not used in general. Instead, pseudo-random number generators
(PRNG) are implemented. We consider the PRNG described in previous Section.

4.6.3 Random Placement Policy

In this section, we propose an implementation of a random placement policy. The
key components of this design are (1) a parametric hash function, and (2) a low-
cost PRNG. The latter has been already described. In fact, RII could be provided
by software since it must be updated only once when starting the execution of a
program.

In order to keep cache latency and energy low, the implementation of both com-
ponents must be kept simple. Moreover, both components are placed ‘in front’ of
the cache, so the cache design is not changed per se, see Figure 4.3, but some extra
logic is added before accessing cache.

The Parametric Hash Function is used to randomise the cache placement. This
randomisation is achieved by combining the address of each memory request with
a RII in order to create an index for a cache set. This indexing function must
satisfy two basic conditions. First, it has to allow each address to be mapped in
any of the sets for the different RII values. And second it has to produce different
indexes for pairs of addresses when RII changes, to ensure that cache set conflicts
among addresses will not repeat systematically. That is, if two addresses conflict
in the same set for one run, their probability of conflict for subsequent runs (on
which a new RII is generated) is low.

Figure 4.4 shows our implementation of the parametric placement function, which
accomplishes both conditions. As mentioned before, the hash function has two
inputs, the bits of the address used to access the set (index bits), ‘@’ in the figure,
and a RII. In the configuration of the particular example, 32 bytes per cache line
and 32-bit addresses are assumed. Therefore, the 5 lowermost bits are discarded
(offset bit) and only 27 bits are used.

The hash function rotates the address bits, based on some bits of the RII as it is

49

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

shown in the two rightmost rotate blocks of the figure. By doing this, we ensure
that when a different RII is used, the mapping of that address will be changed.
Analogously, the address bits are rotated based on some bits of the address itself.
This operation, which is performed by the two leftmost rotate blocks, changes the
way that the addresses are shifted. Note that addresses are padded with zeros to
obtain a power-of-two number of bits, so address bits can be rotated without any
constraint. Otherwise, rotation values between 27 and 31 would require special
treatment.
Finally, all bits of the rotated addresses, the original address and the RII (187
bits in the example), are XORed successively, until we obtain the desired number
of bits for indexing the cache sets. For example, a 16KB cache with 32 bytes per
line would need 9 index bits for a direct-mapped organisation, 8 bits for a 2-way
set-associative, and so on and so forth. Hence, 5 XOR gate levels are enough to
produce the index.
With this design, by construction, all cache sets have the same probability of being
indexed when RII is changed. Also the address mapping of different addresses
changes in a different and random way. Therefore, conflicts between addresses
change across runs as shown in the next section.
As shown in Figure 4.4, the hardware implementation of the hash function consists
of 4 rotate blocks and 5 levels of 2 input XOR gates. Each rotate block can be
implemented with a 5-level multiplexer [20]. Since the latency and the energy per
access of a fully-associative cache is much larger than the one of direct-mapped or
set-associative caches, the relative overhead of the hash function is small. We have
corroborated this observation by integrating our parametric placement function
into the CACTI tool [28]. Results for several cache configurations show that energy
per access grows around 3% and delay grows by 40% (it is still less than half the
delay of a fully-associative cache). Note that hit latency has low impact in WCET,
given that WCET is mostly influenced by the miss latency.

50

5

Compiler and Run-Time Support
for Randomisation

A memory object refers to a memory entity, normally stored in consecutive memory
addresses, that can be manipulated by a software or a hardware component. In
the case of software, memory objects may refer to program, functions, basic-blocks,
data structures, etc. These objects can be created off-line, by the compiler and the
linker, or on-line as part of the program execution by the program loader and
run-time memory-related libraries.
The location at which memory objects of a program are placed into cache, i.e. the
cache layout (see Section 4.4), is determined by the placement and replacement
policies. The PROARTIS random cache design implements both random policies
making cache conflict layouts, and so observed execution time, vary randomly
across program invocations. This makes the PROARTIS random cache design
presenting execution times fulfilling the properties required by the PTA methods.
A similar behaviour to that provided by our random placement and random cache
can be achieved with deterministic cache designs if an appropriate software support
is provided. This section presents a compiler technique that makes programs run on
top of deterministic caches to behave as if they were run on top of time randomised
caches.

5.1 Random Cache Behaviour on Deterministic Caches

Given a program and a deterministic cache design, e.g. modulo placement and
LRU or FIFO replacement policies, all runs of the program lead to one cache
conflict, making the execution time not varying across those invocations (runs) of
the program. The reason is that each memory object is mapped into the exact same
cache position based on: (1) its memory address, which determines the cache set
in which it is allocated and (2) its relative order with respect to the other memory
objects, which determines the cache way.
In order to force deterministic cache designs to behave as time randomised, memory
objects must be located into random cache positions. To do so, in theory, software
must ensure that (1) memory objects are placed in random memory locations across
runs and (2) the order in which memory objects are accessed is randomised.
The former makes the cache set to be randomly selected at every new memory

51

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

location, and so mimicking the behaviour of a random placement policy. The lat-
ter makes memory objects to be randomly placed in cache ways, mimicking the
behaviour of a random replacement policy. It is important to notice that the de-
terministic behaviour of the cache does not break the random decisions taken by
the software. That is, because memory objects are located and accessed randomly,
the cache conflict layout that the deterministic cache generates is different at ev-
ery new memory location and access, maintaining the desired random properties.
Unfortunately, the order in which memory objects are accessed depends on the
functional behaviour of programs and so changing it would result in an incorrect
program execution.

Therefore, PROARTIS has focused on software-only approaches to randomise the
placement of memory objects. That is, changing the memory position in which
objects are located, does not change the functional behaviour of the program and
only affects its timing behaviour since different cache conflict layouts are generated,
which is the desirable effect previous sentence is weird. This makes the software
approach the perfect candidate to be applied to current high performance processor
designs that already implement a random replacement policy [2] [19]. The next
sections describe in detail software techniques evaluated within PROARTIS to this
end 1.

5.2 Software Components and Memory Objects

Next, we list four of the main software components:

- Compiler. It is in charge of translating the program source code into object code.
Hence, it creates all objects required by a program, placing them into different
memory regions, i.e. code and data regions. Current compilers place program
objects into consecutive memory addresses as defined into the source code.

- Linker. It is in charge of building the program executable by combining multiple
object code files into a single executable, placing code and data memory regions
from different object files into a single and unified code and data region.

- Program loader. It is in charge of loading the executable program into main
memory. The program loader is an operating system module that operates on-
line. However, it can also operate off-line before the system becomes operational,
being in this case not part of the operating system.

- Run-time memory-related libraries. They are in charge of providing services
related to dynamic memory to programs.

During the second phase of the project, we have focused on functions and stack
memory objects managed by the compiler. During the third phase of the project,
we will focus on randomizing the location of memory objects into the heap, as
well as investigating the implications of software randomization techniques with
multi-core execution.

1The work presented in this section has been submitted as a conference paper in the Real-Time
System Symposium (RTSS)

52

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 5.1: Cache location of functions fa and fb in a direct-mapped cache imple-
menting modulo placement policy.

5.3 Random Location of Memory Objects

In order to elaborate our argument, we assume a direct-mapped cache implementing
a modulo placement policy. Moreover, let us consider a program formed by a loop
that calls two functions, fa and fb, each composed of sequential code. The total
size of the two functions is smaller that the cache size and so the effectiveness of
the cache will be determined by the cache layout, i.e. where functions are placed
in cache.

Figure 5.1 shows three different cache layouts. In Figure 5.1(a), the two functions
are placed in consecutive memory positions that do not collide with each other
thereby taking maximum benefit of the cache. However, if they are placed in
memory positions such that the modulo function makes two pairs of addresses
from the two functions collide into the same cache set, the effectiveness of the
cache will be low or even null because systematic cache misses will occur. Figure
5.1(c) shows the case in which fa and fb are located in memory addresses that map
into the same cache lines. Figure 5.1(b) shows an intermediate case in which half
of each function collide into the same cache lines.

Therefore, forcing fa and fb to be randomly located in main memory makes the
collision of the two functions into the same cache lines (Figure 5.1(c)) occur with
a given probability.

5.3.1 Memory Object Size

The size of memory objects plays an important role into the software-randomization
approach. The reason is that the random location of memory objects does not
remove cache conflicts within memory objects. Because the relative position of
memory addresses of the object with respect to the first address does not change,
intra-object cache conflicts will remain the same, independently of the memory
position of the object. For example, if we consider a function composed of 9
consecutive elements (each fitting within a cache line), and a direct map cache
composed of 8 cache line entries, the first and the last elements of the function
will always collide into the same cache line, independently of its memory location.
Such a deterministic behaviour inside the object may not affect the i.i.d. properties
provided by the random object location, if the size and the number of objects are
selected properly. Next we discuss about it.

In order to develop our argument, let us consider a program composed of only one
function, with no calls to the operating system. In this case, only one object will be

53

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

randomly allocated in memory, and so the random location will have no effect on
execution time2, not fulfilling the i.i.d. property. Instead, if we consider the same
program but divided into multiple functions with a size equal to the cache line size,
the random location of those functions will make the deterministic cache behaving
exactly as having a hardware random placement policy, since each function, and
so cache line will be located in a random cache set.
In general, the number and the size of each memory object will determine the
number of cache conflict layouts generated by the random object location. Similarly
to the argument provided in Section 4.4, the more objects we have, the higher are
the number of cache conflict layouts and so the less probable is to end up in a bad
cache conflict layout that leads to a long execution time.

5.3.2 Influence of the Deterministic Placement Policy

The PROARTIS hardware random placement policy presented in Section 4.3 has
a probability of 1/S of selecting a cache set for a given object, where S is the total
number of cache sets (S = 8 in the example above). Hence, in order to mimic
the placement policy, the software approach should select the cache set in which
the object is placed with the same probability. By doing so, we can compute the
probability of fa and fb to collide into the same cache sets, i.e. 1/S. Unfortunately,
this probability not only depends on the software methodology but also on the
deterministic placement policy considered. Next we discuss this issue.
Deterministic placement policies use the index bits of the memory address to iden-
tify the cache set. This makes the memory address space to be logically divided
into M/S different chunks, M being the total number of main memory entries.
Within each chunk, memory addresses are mapped to the same cache set. Figure
5.2 shows a logical memory address space division done by the modulo placement
policy and the location in main memory and in cache of functions fa and fb. This
property guarantees that, if the main memory entry is randomly selected with a
probability of 1/M its placement into the cache set will fulfil the 1/S property as
well. That is, because each memory address within a chunk has an associated cache
set, the probability of selecting one memory entry within a chunk can be computed
as M/S

M
= 1

S
.

Unfortunately, the probability of locating a memory object into a given main mem-
ory entry is not the same for all objects and it depends on previous locations. In
order to elaborate our argument, consider the example in Figure 5.2 in which fa
and fb occupy four memory entries each. Moreover, let us consider a main memory
with M = 1024 entries and a direct-mapped cache with S = 8 cache sets (which
makes the main memory to be divided into 128 chunks). If fa is the first object
to be randomly located, the probability of placing it into a given memory entry is
1/M , and so the probability of selecting a cache set is 128/1024 = 1/8. However,
when fb is randomly located, this probability changes since it can be only placed
in the remaining memory entries, i.e. M − size(fa), i.e. 1020. As a result, the
number of memory entries associated to the cache sets in which fa is mapped is
lower (one less in the example). Thus, the cache sets in which fa is placed will
have a probability of 127/1020 while the rest will have a probability of 128/1020.

2If the program would call operating system services, interferences with them may change at
every function location

54

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 5.2: Location of functions fa and fb in main memory.

In conclusion, those cache sets already mapped are less probable to be selected.
Such an effect can be eliminated if objects are located in a chunk basis. In other
words, the remaining memory entries within a chunk are not considered to allocate
new objects. By doing so, in the previous example fb is placed into any cache set
with a probability of 127/1016 = 1/8. However, it is also important to remark
that the probability bias of cache sets assigned to already occupied memory entries
tends to disappear as M becomes much bigger than N (which is commonly the
case), and so this effect can be neglected. If we consider a case in which M = 106

and S = 32, the biased probability differs in the fifth decimal digit (0.03125 and
0.031249) of a cache set assigned to a memory entry with respect to another that
is not.

5.4 Computation of ETPs at Processor Instruction
Level

PTA imposes that the timing behaviour of processor instructions must have either
no dependence on the execution history or dependence that can be characterised
probabilistically (see Section 2.2.2). This section shows that such an important
requirement is fulfilled by the software approach as well.
The software approach allocates blocks of instructions (in case of functions) and
variables (in case of stack frames) in random memory positions. This makes all
elements within a block, i.e. the cache lines that form the block, to depend on
the location of the first element. However, such a dependence does not break the
randomisation property. That is, since the first element is randomly located, the
location of the subsequent elements is random as well.
Let us consider the function fa in Figure 5.2(a). The probability of the third
element of fa to be placed in the fourth cache set (marked in red) equals to the
probability of the first element of fa to be placed in the second cache set: 1/S. In
general, if we consider the element within the block a eai , being i its relative position
with respect to the first element of the block, the probability of being placed in

55

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

cache set s is: P a
place(s) = P a

place(f(i, s)), being f(i, s) a function that provides the
first cache set location of the beginning of the block.
Therefore, eai will miss in cache if there exist an element belonging to another block
b that is also located in the same cache set:

Pmiss(ei) = Pplaceb1(s) · Pplaceb2(s) · · ·Pplacebz(s) (5.1)

being z the number of blocks that have been randomly located between two calls
of a. Therefore, similar to the hardware random placement policy, the random
software memory placement allows to characterise probabilistically the timing be-
haviour of memory requests based on previous execution history, i.e. z and i.

5.5 Random Software Approach Implementation: Sta-
bilizer

During the second phase of the project, we have focused on random memory lo-
cation of function and stack frames objects. In both cases, support from compiler
and run-time libraries is required. That is, although the compiler is the software
component in charge of defining the order in which functions and stack frames are
placed within a program, special support to locate functions and stack frames to
new random memory positions is required. In this section we present Stabilizer, a
compiler and run-time system that provides the required services at both software
component levels to randomly allocate functions and stack frame objects:

- The Stabilizer compiler pass has been developed within the LLVM compiler [1].
Each source code file is first compiled to LLVM bytecode using the llvmc compiler
driver. The resulting bytecode file is then linked and processed with LLVM’s
optimisation tool running the Stabilizer compiler pass. The resulting executable
is then linked with the Stabilizer run-time library which performs the dynamic
layout randomisation.

- The Stabilizer run-time library is based on DieHard [3]. DieHard is a memory
allocator that uses heap randomisation to prevent memory errors, making un-
likely that the use of free and out of bounds accesses corrupt live heap data and
providing probabilistic security guarantees.

5.5.1 Function Randomisation

The function randomisation technique re-allocates a function by copying its body
to a new random memory location. A Relocation Table (RT) is placed at the end
of each new relocated function to identify the addresses of all globals and functions
pointed by the relocated function (see Figure 5.3). By doing this, every function
call or global access in the function is indirected through the RT. Each function
points to its own adjacent relocation table using relative addressing modes, so two
randomly located copies of the same function do not share a relocation table. In
Figure 5.3, once functions have been relocated fb calls fa (dotted line) through the
RT. Moreover, the RT contains a users counter that tracks the number of active
users of the function.

56

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 5.3: Relocation table placed immediately at the beginning of functions fa and
fb into the main memory.

The compiler adds the required code within each function to manage the RT,
including code to increase and decrease the users field. The random function
location is composed of two phases:

- Initialisation. During the initialisation phase of the program, the Stabilizer
overwrites the first byte of every relocatable function with a software breakpoint.
When a function is called, the Stabilizer run-time library intercepts the trap and
relocates the function.

- Random memory location. Functions are relocated in three stages: First, the
Stabilizer run-time library requests a sufficiently large block of memory to the
DieHard memory allocator and copies the function body to this location. Second,
the function’s RT is constructed next to the new function location with the users
counter set to zero. Finally, Stabilizer overwrites the beginning of the function’s
original base address with a static jump to the relocated function. Relocation
tables are not present in the program binary but are created on demand.

Interestingly, Stabilizer also allows re-allocating functions on the fly while the pro-
gram is being executed, as the cache random placement policy does when changing
the RII. To do so, all running threads are interrupted. Stabi7lizer then processes
every function location in the active locations list. The original base of the function
is overwritten with a breakpoint instruction, and the function location is added to
the locations list.

5.5.2 Stack Randomisation

Stabilizer randomises the stack by making it non-contiguous: each function call
moves the stack to a random location (see Figure 5.4). These randomly placed
frames are also allocated via DieHard, and Stabilizer reuses them for some time
before they are freed. This bounded reuse improves cache utilisation and reduces
the number of calls to the allocator while still enabling re-randomisation. Every
function has a per-thread depth counter and frame table that maps the depth to

57

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

Figure 5.4: Randomisation of stack frames of functions fa and fb into the main
memory.

the corresponding stack frame. The depth counter is incremented at the start of
the function and decremented just before returning. On every call, the function
loads its stack frame address from the frame table. If the frame address is null, the
Stabilizer runtime allocates a new frame.
Similar to the function randomisation, stack randomisation also allows to re-allocate
stack frames on the fly while the program is being executed. To do so, Stabilizer
invalidates saved stack frames by setting a bit in each entry of the frame table.
When a function loads its frame from the frame table, it checks this bit. If the bit
is set, the old frame is freed and a new one is allocated and stored in the table.
Special handling is required when a stack randomised function calls an external
function. Because external functions have not been randomised with Stabilizer,
they must run on the default stack to prevent overrunning the randomly located
frame. Stabilizer returns the stack pointer to the default stack location just before
the call instruction, and returns it to the random frame after the call returns. Calls
to functions processed by Stabilizer do not require special handling because these
functions will always switch to their randomly allocated frames.

58

Acronyms and Abbreviations

- CDF: Cumulative distribution function.

- DM: Direct map.

- ETP: Execution time profile.

- EVT: Extreme value theory.

- FA: Full associative.

- HW: Hardware.

- ICDF: Inverse cumulative distribution function.

- MBPTA: Measurement-based probabilistic timing analysis.

- MBPTA-EVT: Measurement-based Probabilistic Timing Analysis with Extreme
Value Theory.

- MWC: Multiply-with-carry.

- PDF: Probability distribution function.

- PRNG: Pseudo-random number generator.

- PTA: Probabilistic timing analysis.

- pWECT: Probabilistic worst-case execution time.

- RII: Random index identifier.

- RP: Random placement.

- RR: Random replacement.

- RT: Relocation table.

- SA: Set associative.

- SMP: Symmetric multi-processing.

- SPTA: Static probabilistic timing analysis.

- TLB: Translation look-aside buffer.

- WCET: Worst-case execution time.

59

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

60

References

[1] LLVM. http://dragonegg.llvm.org/.

[2] Aeroflex Gaisler. Quad Core LEON4 SPARC V8 Processor - LEON4-NGMP-
DRAFT - Data Sheet and User’s Manual, 2011.

[3] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory
safety for unsafe languages. In In Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Implementation, pages
158–168. ACM Press, 2006.

[4] J.V. Bradley. Distribution-Free Statistical Tests. Prentice-Hall, 1968.

[5] A. Burns and D. Griffin. Predictability as an emergent behaviour. 2011.

[6] J.M. Cargal. Discrete Mathematics for Neophytes: Number Theory, Probabil-
ity, Algorithms, and Other Stuff. 1988.

[7] F.J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis, C. Lo,
and D. Maxim. PROARTIS: Probabilistically analysable real-time systems.
ACM Transactions on Embedded Computing Systems, to appear.

[8] R.N. Charette. This car runs on code. In IEEE Spectrum online, 2009.

[9] P. Clarke. Automotive chip content growing fast, says gartner. In
http://www.eetimes.com/electronics-news/4207377/Automotive-chip-content-
growing-fast, 2011.

[10] Andrew Coombes. How to measure and optimize reliable embedded software.
In ACM SIGAda Annual International Conference, 2011.

[11] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega, L. Kos-
midis, J. Abella, E. Mezzetti, E. Quinones, and F.J. Cazorla. Measurement-
based probabilistic timing analysis for multi-path programs. In Proceedings of
the 24th Euromicro Conference on Real-Time Systems. IEEE, July 2012. To
appear.

[12] S. Edgar and A. Burns. Statistical analysis of WCET for scheduling. In the
22nd IEEE Real-Time Systems Symposium (RTSS01), pages 215–225, 2001.

[13] W. Feller. An introduction to Probability Theory and Its Applications. 1996.

61

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

[14] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theil-
ing, S. Thesing, and R. Wilhelm. Reliable and precise wcet determination for a
real-life processor. First International Workshop on Embedded Software (EM-
SOFT 2001), 2001.

[15] Edward Frees and Emiliano Valdez. Understanding relationships using copu-
las. North American Actuarial Journal, 2:1–25, 1998.

[16] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathe-
matics. Addison-Wesley, Reading MA., 1988.

[17] D. Griffin and A. Burns. Realism in Statistical Analysis of Worst Case Execu-
tion Times. In 10th International Workshop on Worst-Case Execution Time
Analysis (WCET 2011), pages 44–53, 2010.

[18] J. Hansen, S. Hissam, and G. A. Moreno. Statistical-based wcet estimation
and validation. In the 9th International Workshop on Worst-Case Execution
Time (WCET) Analysis, 2009.

[19] http://www.arm.com. ARM Cortex-R4 processor manual.

[20] S. Huntzicker et al. Energy-delay tradeoffs in 32-bit static shifter designs. In
ICCD, 2008.

[21] S. Kotz and S. Nadarajah. Extreme value distributions: theory and applica-
tions. World Scientific, 2000.

[22] K. Lahiri, A. Raghunathan, and G. Lakshminarayana. LOTTERYBUS: a new
high-performance communication architecture for system-on-chip designs. In
Proceedings of the 38th annual Design Automation Conference, DAC ’01, pages
15–20, 2001.

[23] Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Wcet analysis of multi-
level set-associative data caches. 9th International Workshop on Worst-Case
Execution Time (WCET) Analysis, 2009.

[24] T. Lundqvist and P. Stenstrom. Timing anomalies in dynamically scheduled
microprocessors. In RTSS, 1999.

[25] G. Marsaglia and A. Zaman. A new class of random number generators. Annals
of Applied Probability, 1(3):462–480, 1991.

[26] E. Mezzetti and T. Vardanega. On the industrial fitness of wcet analysis. 11th
International Workshop on Worst-Case Execution-Time Analysis, 2011.

[27] Frank Mueller. Timing analysis for instruction caches. Real-Time Systems -
Special issue on worst-case execution-time analysis archive, 2000.

[28] N. Muralimanohar, R. Balasubramonian, and N.P. Jouppi. CACTI 6.0: A
tool to understand large caches. HP Tech Report HPL-2009-85, 2009.

[29] S.M. Petters. Worst Case Execution Time Estimation for Advanced Processor
Architectures. PhD thesis, Technical University of Munich, 2002.

62

D1.2 - Technical Deliverables for Milestone MS2
Version 2.0

[30] Eduardo Quinones, Emery D. Berger, Guillem Bernat, and Francisco J. Ca-
zorla. Using Randomized Caches in Probabilistic Real-Time Systems. In 22nd
Euromicro Conference on Real-Time Systems (ECRTS), pages 129–138. IEEE,
2009.

[31] J. Reineke, D. Grund, C. Berg, and R. Wilhelm. Timing predictability of
cache replacement policies. Real-Time Systems, 37:99–122, November 2007.

[32] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger, and
B. Becker. A definition and classification of timing anomalies. Int’l Workshop
On Worst-Case Execution Time Analysis (WCET 2006), 2006.

[33] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo. A statistical test suite
for the validation of random number generators and pseudo random number
generators for cryptographic applications. Special publication 800-22rev1a,
US National Institute of Standards and Technology (NIST), 2010.

[34] I. Wenzel, R. Kirner, P. Puschner, and B. Rieder. Principles of timing anoma-
lies in superscalar processors. Proceedings of the Fifth International Conference
on Quality Software, pages 295–306, 2005.

[35] R. Wilhelm et al. The worst-case execution-time problem overview of methods
and survey of tools. ACM Transactions on Embedded Computing Systems, 7:1–
53, May 2008.

[36] S. Zhou. An efficient simulation algorithm for cache of random replacement
policy. In Proceedings of the 2010 IFIP international conference on Network
and parallel computing, NPC’10, 2010.

63

